--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ag_news metrics: - f1 model-index: - name: ag-news-twitter-4800-bert-base-uncased results: - task: name: Text Classification type: text-classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - name: F1 type: f1 value: 0.9122649070746451 --- # ag-news-twitter-4800-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - F1: 0.9123 - Acc: 0.9126 - Loss: 0.6235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | F1 | Acc | Validation Loss | |:-------------:|:-----:|:----:|:------:|:------:|:---------------:| | No log | 1.0 | 300 | 0.8951 | 0.8955 | 0.3460 | | 0.6828 | 2.0 | 600 | 0.8957 | 0.8959 | 0.3295 | | 0.6828 | 3.0 | 900 | 0.9096 | 0.9095 | 0.3196 | | 0.1866 | 4.0 | 1200 | 0.9011 | 0.9018 | 0.4358 | | 0.0804 | 5.0 | 1500 | 0.9116 | 0.9116 | 0.4441 | | 0.0804 | 6.0 | 1800 | 0.9121 | 0.9124 | 0.4983 | | 0.0236 | 7.0 | 2100 | 0.9126 | 0.9128 | 0.5473 | | 0.0236 | 8.0 | 2400 | 0.9082 | 0.9086 | 0.6025 | | 0.0092 | 9.0 | 2700 | 0.9121 | 0.9124 | 0.6057 | | 0.0028 | 10.0 | 3000 | 0.9123 | 0.9126 | 0.6235 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1