--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-rus-finetuned results: [] --- # xlm-roberta-base-rus-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1612 - F1: 0.8438 - Roc Auc: 0.8957 - Accuracy: 0.7839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4558 | 1.0 | 131 | 0.4195 | 0.0 | 0.5 | 0.1608 | | 0.268 | 2.0 | 262 | 0.2245 | 0.6816 | 0.7919 | 0.6734 | | 0.198 | 3.0 | 393 | 0.2071 | 0.7838 | 0.8577 | 0.6985 | | 0.141 | 4.0 | 524 | 0.1801 | 0.8030 | 0.8733 | 0.7487 | | 0.1185 | 5.0 | 655 | 0.1612 | 0.8438 | 0.8957 | 0.7839 | | 0.1002 | 6.0 | 786 | 0.1520 | 0.8418 | 0.8999 | 0.7990 | | 0.0967 | 7.0 | 917 | 0.1678 | 0.8278 | 0.8956 | 0.7688 | | 0.0673 | 8.0 | 1048 | 0.1673 | 0.8402 | 0.9043 | 0.7487 | | 0.0535 | 9.0 | 1179 | 0.1721 | 0.8339 | 0.9025 | 0.7638 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0