--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-hin-finetuned results: [] --- # xlm-roberta-base-hin-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1860 - F1: 0.7535 - Roc Auc: 0.8671 - Accuracy: 0.74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4196 | 1.0 | 109 | 0.3772 | 0.0 | 0.5 | 0.31 | | 0.3586 | 2.0 | 218 | 0.2947 | 0.1149 | 0.5683 | 0.39 | | 0.2381 | 3.0 | 327 | 0.2153 | 0.5976 | 0.7550 | 0.65 | | 0.1881 | 4.0 | 436 | 0.1626 | 0.7613 | 0.8478 | 0.76 | | 0.1228 | 5.0 | 545 | 0.1616 | 0.7681 | 0.8682 | 0.75 | | 0.1085 | 6.0 | 654 | 0.1794 | 0.7227 | 0.8415 | 0.71 | | 0.0865 | 7.0 | 763 | 0.1545 | 0.7622 | 0.8640 | 0.77 | | 0.0747 | 8.0 | 872 | 0.1624 | 0.7701 | 0.8739 | 0.74 | | 0.0561 | 9.0 | 981 | 0.1982 | 0.7479 | 0.8578 | 0.73 | | 0.0432 | 10.0 | 1090 | 0.1725 | 0.7579 | 0.8643 | 0.74 | | 0.0418 | 11.0 | 1199 | 0.1910 | 0.7533 | 0.8689 | 0.72 | | 0.0327 | 12.0 | 1308 | 0.1860 | 0.7535 | 0.8671 | 0.74 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0