--- language: bn tags: - Bert base Bangla - Bengali Bert - Bengali lm - Bangla Base Bert - Bangla Bert language model - Bangla Bert datasets: - BanglaLM dataset --- # Bangla BERT Base Here we published a pretrained Bangla bert language model as **bert-base-bangla**! which is now available in huggingface model hub. Here we described [bert-base-bangla](https://github.com/Kowsher/bert-base-bangla) which is a pretrained Bangla language model based on mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and the GitHub [repository](https://github.com/google-research/bert) ## Corpus Details We trained the Bangla bert language model using BanglaLM dataset from kaggle [BanglaLM](https://www.kaggle.com/gakowsher/bangla-language-model-dataset). There is 3 version of dataset which is almost 40GB. After downloading the dataset, we went on the way to mask LM. **Bangla Base BERT Tokenizer** ```py from transformers import AutoTokenizer, AutoModel bnbert_tokenizer = AutoTokenizer.from_pretrained("Kowsher/bert-base-test") text = "খাঁটি সোনার চাইতে খাঁটি আমার দেশের মাটি" bnbert_tokenizer.tokenize(text) # output: ['খাটি', 'সে', '##ানার', 'চাইতে', 'খাটি', 'আমার', 'দেশের', 'মাটি'] ``` **MASK Generation** here, we can use bert base bangla model as for masked language modeling: ```py from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained("Kowsher/bert-base-test") tokenizer = BertTokenizer.from_pretrained("Kowsher/bert-base-test") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"আমি বাংলার গান {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'আমি বাংলার গান লিখি', 'score': 0.17955434322357178, 'token': 24749, 'token_str': 'লিখি'} nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"তুই রাজাকার তুই {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'তই রাজাকার তই রাজাকার', 'score': 0.9975168704986572, 'token': 13401, 'token_str': 'রাজাকার'} nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"বাংলা আমার {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'বাংলা আমার অহংকার', 'score': 0.5679506063461304, 'token': 19009, 'token_str': 'অহংকার'} ``` ## Author [Kowsher](http://kowsher.org/)