--- language: - "th" tags: - "thai" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-thai-syllable datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "หลายหัวดีกว่าหัวเดียว" --- # roberta-base-thai-syllable-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-syllable](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-syllable-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models