#! /usr/bin/python3 src="Kendamarron/Tokara-0.5B-v0.1" tgt="KoichiYasuoka/Tokara-0.5B-ud-causal" url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW" import os,json,unicodedata from transformers import AutoTokenizer,AutoConfig,Qwen2ForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer d=os.path.basename(url) os.system("test -d "+d+" || git clone --depth=1 "+url) os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done") otk=AutoTokenizer.from_pretrained(src,unk_token="<|im_start|>",sep_token="<|im_end|>") otk.save_pretrained("tmpdir") os.rename("tmpdir/tokenizer.json","tmpdir/tokenizer.json.old") os.rename("tmpdir/merges.txt","tmpdir/oldmerges.txt") d=json.loads(otk.backend_tokenizer.to_str()) form=set() with open("train.conllu","r",encoding="utf-8") as r: for s in r: w=s.split("\t") if len(w)==10 and w[0].isdecimal(): form.add(w[1]) m=[t for t in d["model"]["merges"] if len(t)<5 and unicodedata.category(t[0])[0]!="P"] for i in range(len(otk)): w=otk.decode(i) if len(w)==2 and w in form and not unicodedata.name(w[0]).startswith("HIRAGANA"): k=otk([w[0],w[1]],add_special_tokens=False)["input_ids"] if len(k[0])==1 and len(k[1])==1: m.append(" ".join(otk.convert_ids_to_tokens([k[0][0],k[1][0]]))) with open("tmpdir/merges.txt","w",encoding="utf-8") as w: print("#version: 0.2",file=w) print("\n".join(m),file=w) ntk=AutoTokenizer.from_pretrained("tmpdir") class UDCausalDataset(object): def __init__(self,conllu,tokenizer,oldtokenizer=None,embeddings=None): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.oldtokenizer=oldtokenizer if oldtokenizer else tokenizer self.embeddings=embeddings self.max_tokens=3 self.seeks=[(0,0)] label=set(["SYM"]) dep=set() s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append((self.conllu.tell(),0)) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): p=w[3] if w[5]=="_" else w[3]+"|"+w[5] label.add(p) dep.add(p+("|" if w[6]=="0" else "|l-" if int(w[0])0: ids=i+[pad]*j upos=u+["SYM"]*j else: ids=i[0:self.max_tokens] upos=u[0:self.max_tokens] return {"inputs_embeds":emb[ids,:],"labels":[self.label2id[p] for p in upos]} trainDS=UDCausalDataset("train.conllu",ntk,otk) devDS=UDCausalDataset("dev.conllu",ntk,otk) testDS=UDCausalDataset("test.conllu",ntk,otk) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True) mdl=Qwen2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True) trainDS.embeddings=mdl.get_input_embeddings().weight trainDS.max_tokens=min(trainDS.max_tokens,cfg.max_position_embeddings) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=32,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS) trn.train() trn.save_model(tgt) ntk.save_pretrained(tgt)