---
tags:
- merge
- mergekit
- lazymergekit
- HuggingFaceH4/mistral-7b-grok
- senseable/WestLake-7B-v2
base_model:
- HuggingFaceH4/mistral-7b-grok
- senseable/WestLake-7B-v2
---

# westral

westral is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [HuggingFaceH4/mistral-7b-grok](https://huggingface.co/HuggingFaceH4/mistral-7b-grok)
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: HuggingFaceH4/mistral-7b-grok
        layer_range: [0, 32]
      - model: senseable/WestLake-7B-v2
        layer_range: [0, 32]
merge_method: slerp
base_model: HuggingFaceH4/mistral-7b-grok
parameters:
  t:
    - filter: lm_head
      value: [0.75]
    - filter: embed_tokens
      value: [0.75]
    - filter: self_attn
      value: [0.75,0.25]
    - filter: mlp
      value: [0.25,0.75]
    - filter: layernorm
      value: [0.5,0.5]
    - filter: modelnorm
      value: [0.75]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kiruthikarthi/westral"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```