--- license: cc-by-nc-nd-4.0 tags: - not-for-all-audiences --- # Keiana-L3-Test5.1-8B-7 Keiana-L3-Test5.1-8B-7 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): # Keep in mind that, this merged model isn't usually tested at the moment, which could benefit in vocabulary error. * [Kaoeiri/Keiana-L3-Test4.7-8B-3](https://huggingface.co/Kaoeiri/Keiana-L3-Test4.7-8B-3) * [VisionForge/Alien-8B-v1.6-DPO](https://huggingface.co/VisionForge/Alien-8B-v1.6-DPO) * [cgato/L3-TheSpice-8b-v0.8.3](https://huggingface.co/cgato/L3-TheSpice-8b-v0.8.3) ## 🧩 Configuration ```yaml merge_method: model_stock dtype: float16 base_model: jeiku/Average_Normie_v2_l3_8B models: - model: Kaoeiri/Keiana-L3-Test4.7-8B-3 parameters: weight: 1.0 - model: VisionForge/Alien-8B-v1.6-DPO parameters: weight: .5 density: .5 - model: cgato/L3-TheSpice-8b-v0.8.3 parameters: weight: .5 density: .5 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kaoeiri/Keiana-L3-Test5.1-8B-7" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```