import os from trainer import Trainer, TrainerArgs from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig from TTS.config.shared_configs import BaseAudioConfig from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor from TTS.tts.utils.speakers import SpeakerManager from TTS.tts.datasets.formatters import mozilla_with_speaker output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig( formatter="mozilla_with_speaker", dataset_name="multi_persian", meta_file_train="metadata.csv", language="fa", phonemizer="espeak", path="/kaggle/input", ) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=False, resample=False, ) ### Extract speaker embeddings SPEAKER_ENCODER_CHECKPOINT_PATH = ( "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" ) SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" character_config=CharactersConfig( characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ', punctuations='!(),-.:;? ̠،؛؟‌<>', phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}', pad="", eos="", bos="", blank="", characters_class="TTS.tts.utils.text.characters.IPAPhonemes", ) model_args = VitsArgs( d_vector_file=['/kaggle/working/speakers.pth'], use_d_vector_file=True, d_vector_dim=512, num_layers_text_encoder=10, speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, # resblock_type_decoder="2", # On the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model # Usefull parameters to enable the Speaker Consistency Loss (SCL) discribed in the paper # use_speaker_encoder_as_loss=True, # Usefull parameters to the enable multilingual training # use_language_embedding=True, # embedded_language_dim=4, ) config = VitsConfig( audio=audio_config, run_name="vits_fa_female", model_args=model_args, batch_size=8, eval_batch_size=4, batch_group_size=5, num_loader_workers=0, num_eval_loader_workers=2, run_eval=True, test_delay_epochs=-1, epochs=1000, save_step=1000, text_cleaner="basic_cleaners", use_phonemes=True, phoneme_language="fa", characters=character_config, phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), compute_input_seq_cache=True, print_step=25, print_eval=True, mixed_precision=False, test_sentences=[ ["سلطان محمود در زمستانی سخت به طلخک گفت که","dilara",None,"fa"], [" با این جامه ی یک لا در این سرما چه می کنی ","farid",None,"fa"], ["مردی نزد بقالی آمد و گفت پیاز هم ده تا دهان بدان خو شبوی سازم.","farid",None,"fa"], ["از مال خود پاره ای گوشت بستان و زیره بایی معطّر بساز","dilara",None,"fa"], ["یک بار هم از جهنم بگویید.","changiz",None,"fa"], ["یکی اسبی به عاریت خواست","changiz",None,"fa"] ], output_path=output_path, datasets=[audio_config], # Enable the weighted sampler use_weighted_sampler=True, # Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has weighted_sampler_attrs={"speaker_name": 1.0}, weighted_sampler_multipliers={}, # It defines the Speaker Consistency Loss (SCL) α to 9 like the paper speaker_encoder_loss_alpha=9.0, ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # config is updated with the default characters if not defined in the config. tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. # Load all the datasets samples and split traning and evaluation sets train_samples, eval_samples = load_tts_samples( config.datasets, # formatter=mozilla_with_speaker, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # Init the model model = Vits.init_from_config(config,ap, tokenizer) # init the trainer and 🚀 trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit()