--- library_name: peft base_model: yahma/llama-7b-hf language: - en pipeline_tag: text-generation tags: - text-generation-inference --- # About : AlpaRA 7B, a model for medical dialogue understanding. Fine-tuned using the Alpaca configuration on a curated 5,000-instruction dataset capturing nuances in patient-doctor conversations. Use Parameter Efficient Fine Tuning (PEFT) and Low Rank Adaptation (LoRA), make this model efficient on consumer-grade GPUs. ## How to Use : ## Load the AlpaRA model ```python from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "yahma/llama-7b-hf", load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, "KalbeDigitalLab/alpara-7b-peft") ``` ## Prompt Template : Feel free to change the instruction ```python PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: "how to cure flu?" ### Response:""" ``` ## Evaluation ```python inputs = tokenizer( PROMPT, return_tensors="pt" ) input_ids = inputs["input_ids"].cuda() print("Generating...") generation_output = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=512, ) for s in generation_output.sequences: result = tokenizer.decode(s).split("### Response:")[1] print(result) ```