--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - wer model-index: - name: w2v2-base_kabir results: [] --- # w2v2-base_kabir This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [Medical Speech, Transcription, and Intent](https://www.kaggle.com/datasets/paultimothymooney/medical-speech-transcription-and-intent) dataset. It achieves the following results on the evaluation set: - Loss: 0.9705 - Wer: 0.3289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 250 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | 2.8771 | 20.8333 | 500 | 2.8897 | 1.0 | | 0.3115 | 41.6667 | 1000 | 0.9687 | 0.4125 | | 0.1248 | 62.5 | 1500 | 0.9421 | 0.3502 | | 0.0658 | 83.3333 | 2000 | 0.9894 | 0.3348 | | 0.0703 | 104.1667 | 2500 | 0.9705 | 0.3289 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0