--- model-index: - name: Junrulu/Llama-3-8B-Instruct-Iterative-SamPO results: [] datasets: - HuggingFaceH4/ultrafeedback_binarized language: - en base_model: meta-llama/Meta-Llama-3-8B-Instruct license: llama3 --- # Model Card for Llama-3-8B-Instruct-Iterative-SamPO This repository provides a fine-tuned version of Llama-3-8B-Instruct, using our proposed [SamPO](https://github.com/LuJunru/SamPO) algorithm. We obey all licenses mentioned in llama3's work. ## Performance | Model | GSM8K | IFEval | PiQA | MMLU | TruthfulQA | AlpacaEval2 | LC AlpacaEval2 | Length in Tokens | | ----- | ------| ------ | ---- | ---- | ---------- | ----------- | -------------- | ---------------- | | **Llama3-8B-Instruct** | 75.06 | 49.40 | 80.69 | 63.85 | 36.47 | 22.57 | 22.92 | 421 | | **Llama3-8B-Instruct-DPO** | 75.59 | 51.80 | **81.94** | 64.06 | 40.39 | 23.34 | 23.20 | 422 | | **Llama3-8B-Instruct-Iterative-DPO** | 74.91 | 52.52 | 81.66 | 64.02 | 39.90 | 23.92 | 25.50 | 403 | | **Llama3-8B-Instruct-Iterative-SamPO** | **77.81** | **60.55** | 81.18 | **64.12** | **44.07** | **30.68** | **35.14** | 377 | ## Evaluation Details Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness): - GSM8K: 8-shot, report strict match - IFEval: 3-shot, report instruction-level strict accuracy - PiQA: 3-shot, report accuracy - MMLU: 0-shot, report normalized accuracy - TruthfulQA: 3-shot, report accuracy of single-true mc1 setting One open-ended benchmark, using official [alpaca_eval](https://github.com/tatsu-lab/alpaca_eval/): - AlpacaEval2: win rate (%) judged by GPT-4-turbo between the model's outputs vs. the GPT-4-turbo's response - LC AlpacaEval2: length-debiased win rate (%) of AlpacaEval2 - Length in Tokens: the average output length of AlpacaEval2, calculated in tokens with Llama3's tokenizer ## Input Format The model is trained to use the following format: ``` <|start_header_id|>user<|end_header_id|> {PROMPT}<|eot_id|> <|start_header_id|>assistant<|end_header_id|> {Response} ``` ## Training hyperparameters The following hyperparameters were used during DPO/SamPO training: - DPO beta: 0.1 - learning_rate: 4e-7 * sqrt(Num of Nodes) - total_train_batch_size: 128 * Num of Nodes - optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - Weight Decay: 0.0 - num_epochs: 3.0 - Specifically add above input format over training samples