--- library_name: transformers datasets: - DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 base_model: - google/gemma-2-27b --- #Usage ・!pip install -U bitsandbytes ・!pip install -U transformers ・!pip install -U accelerate ・!pip install -U datasets ・!pip install -U peft from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel import torch from tqdm import tqdm import json # Hugging Faceで取得したTokenをこちらに貼る。 HF_TOKEN = "" # ベースとなるモデルと学習したLoRAのアダプタ。 model_id = "google/gemma-2-27b" adapter_id = "JunkAto6/gemma-2-27b-finetune" # こちらにアップロードしたHugging FaceのIDを指定してください。 # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # データセットの読み込み。 datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # 推論 results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output})