#!/usr/bin/env python3 # ============================================================================== # # Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved. # # TPU-MLIR is licensed under the 2-Clause BSD License except for the # third-party components. # # ============================================================================== import os import json import torch import argparse from tqdm import tqdm import importlib.metadata from transformers import AutoModelForCausalLM torch.set_grad_enabled(False) parser = argparse.ArgumentParser(description='export onnx') parser.add_argument('-m', '--model_path', type=str, help='path to the torch model') parser.add_argument('-s', '--seq_length', type=int, help="sequence length") parser.add_argument('-d', '--device', type=str, choices=["cpu", "cuda"], default="cpu") args = parser.parse_args() def modify_json(json_path): with open(json_path, 'r') as file: config_json = json.load(file) config_json['seq_length'] = args.seq_length config_json['fp16'] = False config_json['bf16'] = False config_json['fp32'] = True config_json['use_dynamic_ntk'] = False with open(json_path, 'w') as file: json.dump(config_json, file, indent=4) model_path = args.model_path json_path = os.path.join(model_path, "config.json") folder = f"./tmp/onnx" modify_json(json_path) device = torch.device(args.device) origin_model = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, torch_dtype=torch.float32, device_map="cpu").eval() for param in origin_model.parameters(): param.requires_grad = False config = origin_model.config transformer = origin_model.transformer layers = transformer.h SEQ_LENGTH = config.seq_length NUM_LAYERS = config.num_hidden_layers HIDDEN_SIZE = config.hidden_size NUM_ATTENTION_HEADS = config.num_attention_heads HEAD_DIM = HIDDEN_SIZE // NUM_ATTENTION_HEADS VOCAB_SIZE = config.vocab_size print(f'Layers: {NUM_LAYERS}\nHidden size: {HIDDEN_SIZE}\n') transformers_version = importlib.metadata.version('transformers') if transformers_version != config.transformers_version: print(f"Your version of transformers is {transformers_version}, not {config.transformers_version}") class Embedding(torch.nn.Module): def __init__(self): super().__init__() def forward(self, input_ids): out = transformer.wte(input_ids) return out.float() class Block(torch.nn.Module): def __init__(self, layer_id): super().__init__() self.layer_id = layer_id self.layer = layers[layer_id] self.cos_emb = self.layer.attn.rotary_emb(SEQ_LENGTH).view(SEQ_LENGTH, HEAD_DIM).cos() self.sin_emb = self.layer.attn.rotary_emb(SEQ_LENGTH).view(SEQ_LENGTH, HEAD_DIM).sin() def forward(self, hidden_states, position_ids, attention_mask): cos_pos = self.cos_emb[position_ids].unsqueeze(2) sin_pos = self.sin_emb[position_ids].unsqueeze(2) hidden_states, past_kv = self.layer( hidden_states, attention_mask=attention_mask, use_cache=True, rotary_pos_emb=(cos_pos, sin_pos)) present_k, present_v = past_kv return hidden_states.float(), present_k.float(), present_v.float() class BlockCache(torch.nn.Module): def __init__(self, layer_id): super().__init__() self.layer_id = layer_id self.layer = layers[layer_id] self.cos_emb = self.layer.attn.rotary_emb(SEQ_LENGTH).view(SEQ_LENGTH, HEAD_DIM).cos() self.sin_emb = self.layer.attn.rotary_emb(SEQ_LENGTH).view(SEQ_LENGTH, HEAD_DIM).sin() def forward(self, hidden_states, position_ids, attention_mask, past_k, past_v): cos_pos = self.cos_emb[position_ids].unsqueeze(2) sin_pos = self.sin_emb[position_ids].unsqueeze(2) hidden_states, past_kv = self.layer( hidden_states, layer_past=(past_k, past_v), attention_mask=attention_mask, use_cache=True, rotary_pos_emb=(cos_pos, sin_pos)) present_k, present_v = past_kv return hidden_states.float(), present_k.float(), present_v.float() class LmHead(torch.nn.Module): def __init__(self): super().__init__() def forward(self, hidden_states): hidden_states = transformer.ln_f(hidden_states) m_logits = origin_model.lm_head(hidden_states) return m_logits class GreedyHead(torch.nn.Module): def __init__(self): super().__init__() def forward(self, m_logits): _, token = torch.topk(m_logits.float(), 1) return token # refs:https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py class PenaltySampleHead(torch.nn.Module): def __init__(self, top_k = 50, min_tokens_to_keep = 5): super().__init__() self.top_k = top_k self.min_tokens_to_keep = min_tokens_to_keep self.keep_matrix = torch.zeros((1, self.top_k), dtype=torch.bool) self.keep_matrix[0, :self.min_tokens_to_keep] = True def forward(self, m_logits, input_ids, top_p, temperature, penalty): # repeat penalty logits = torch.gather(m_logits, 1, input_ids) logits = torch.where(logits < 0, logits * penalty, logits / penalty) m_logits.scatter_(1, input_ids, logits) # top_k logits, token = torch.topk(m_logits.float(), self.top_k) # temperature logits = logits / temperature # top_p cumulative_probs = logits.softmax(dim=1).cumsum(dim=1) mask = cumulative_probs < top_p mask = mask + self.keep_matrix filtered_logits = torch.where(mask, logits, torch.FloatTensor([-1000.])) probs = filtered_logits.softmax(dim=1) return probs, token def convert_block(layer_id): model = Block(layer_id) hidden_states = torch.randn( (1, SEQ_LENGTH, HIDDEN_SIZE)).to(device) position_ids = torch.tensor([range(SEQ_LENGTH)], dtype=torch.long).to(device) attention_mask = torch.randn( (1, 1, SEQ_LENGTH, SEQ_LENGTH)).to(device) torch.onnx.export( model, (hidden_states, position_ids, attention_mask), f'{folder}/block_{layer_id}.onnx', verbose=False, input_names=['input_states', 'position_ids', 'attention_mask'], output_names=['hidden_states', 'past_k', 'past_v'], do_constant_folding=True, opset_version=15) def convert_block_cache(layer_id): model = BlockCache(layer_id) hidden_states = torch.randn((1, 1, HIDDEN_SIZE)).to(device) attention_mask = torch.ones( (1, 1, 1, SEQ_LENGTH + 1)).to(device) position_ids = torch.tensor([range(1)], dtype=torch.long).to(device) past_k = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM)).to(device) past_v = torch.randn((1, SEQ_LENGTH, NUM_ATTENTION_HEADS, HEAD_DIM)).to(device) torch.onnx.export( model, (hidden_states, position_ids, attention_mask, past_k, past_v), f'{folder}/block_cache_{layer_id}.onnx', verbose=False, input_names=[ 'input_states', 'position_ids', 'attention_mask', 'history_k', 'history_v' ], output_names=['hidden_states', 'past_k', 'past_v'], do_constant_folding=True, opset_version=15) def convert_embedding(): model = Embedding() input_ids = torch.tensor([range(SEQ_LENGTH)]).to(device) module = torch.jit.trace(model.forward, input_ids) torch.jit.save(module, f'{folder}/embedding.pt') def convert_lm_head(): model = LmHead() hidden_states = torch.randn(1, HIDDEN_SIZE).to(device) module = torch.jit.trace(model.forward, hidden_states) torch.jit.save(module, f'{folder}/lm_head.pt') def convert_greedy_head(): model = GreedyHead() m_logits = torch.randn(1, VOCAB_SIZE) torch.onnx.export( model, (m_logits), f'{folder}/greedy_head.onnx', verbose=False, input_names=['m_logits'], output_names=['token'], do_constant_folding=True, opset_version=15) def convert_penalty_sample_head(): model = PenaltySampleHead() m_logits = torch.randn(1, VOCAB_SIZE) input_ids = torch.tensor([range(SEQ_LENGTH)]) top_p = torch.tensor([0.8]) temperature = torch.tensor([0.98]) penalty = torch.tensor([0.98]) torch.onnx.export( model, (m_logits, input_ids, top_p, temperature, penalty), f'{folder}/penalty_sample_head.onnx', verbose=False, input_names=[ 'm_logits', 'input_ids', 'top_p', 'temperature', 'penalty' ], output_names=['probs', 'token'], do_constant_folding=True, opset_version=15) # create folder to store onnx if not os.path.exists(folder): os.makedirs(folder) # def build_prompt(query): # return f'<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n' # from transformers import AutoModelForCausalLM, AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) def test_net_with_mask(): embed = Embedding() greedy = GreedyHead() blocks = [Block(i) for i in range(NUM_LAYERS)] block_kvs = [BlockCache(i) for i in range(NUM_LAYERS)] query = 'hi' print(query) promt = build_prompt(query) ids = tokenizer.encode(promt) print("input ids:{}".format(ids)) token_len = len(ids) ids = ids + (SEQ_LENGTH - token_len) * [0] input_ids = torch.tensor(ids).view(SEQ_LENGTH).to(device) out = embed(input_ids).view(1, SEQ_LENGTH, HIDDEN_SIZE) position_ids = list(range(SEQ_LENGTH)) position_ids = torch.tensor([position_ids]).to(device) attention_mask = torch.ones((SEQ_LENGTH, SEQ_LENGTH)).float() * -10000.0 for i in range(token_len): for j in range(token_len): if j <= i: attention_mask[i][j] = 0.0 attention_mask = attention_mask.view( 1, 1, SEQ_LENGTH, SEQ_LENGTH).to(device) k_cache = [] v_cache = [] for i in range(NUM_LAYERS): out, k, v = blocks[i](out, position_ids, attention_mask) k_cache.append(k) v_cache.append(v) out = out[:, token_len - 1:token_len].view(1, 1, HIDDEN_SIZE) lm = LmHead() token = greedy(lm(out)).view(1) out_ids = [int(token)] word = tokenizer.decode([int(token)]) print(word, end="") while int(token) != tokenizer.im_end_id and token_len < SEQ_LENGTH: token_len += 1 input_ids = torch.tensor([token]).to(device) out = embed(input_ids).view(1, 1, HIDDEN_SIZE) position_ids = torch.tensor([[token_len - 1]]).to(device) attention_mask = torch.zeros((1, 1, 1, SEQ_LENGTH + 1)).float().to(device) attention_mask[:, :, :, token_len-1:SEQ_LENGTH] = -10000.0 for i in range(NUM_LAYERS): out, k, v = block_kvs[i](out, position_ids, attention_mask, k_cache[i], v_cache[i]) k_cache[i][:,token_len] = k v_cache[i][:,token_len] = v token = greedy(lm(out)).view(1) out_ids.append(int(token)) word = tokenizer.decode([int(token)]) print(word, end="") print("\noutput_ids:{}".format(out_ids)) # test_net_with_mask() # export models print(f'Convert block & block_cache') for i in tqdm(range(NUM_LAYERS)): convert_block(i) convert_block_cache(i) print(f'Convert embedding') convert_embedding() print(f'Convert lm_head') convert_lm_head() convert_greedy_head() convert_penalty_sample_head()