--- base_model: - JoPmt/Trismal-NeurAmoclion-7B-Base-Ties - preemware/Prox-MistralHermes-7B tags: - merge - mergekit - lazymergekit - JoPmt/Trismal-NeurAmoclion-7B-Base-Ties - preemware/Prox-MistralHermes-7B --- # Trismal-Xyro-7B-Base-Ties Trismal-Xyro-7B-Base-Ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [JoPmt/Trismal-NeurAmoclion-7B-Base-Ties](https://huggingface.co/JoPmt/Trismal-NeurAmoclion-7B-Base-Ties) * [preemware/Prox-MistralHermes-7B](https://huggingface.co/preemware/Prox-MistralHermes-7B) ## 🧩 Configuration ```yaml models: - model: JoPmt/Trismal-NeurAmoclion-7B-Base-Ties parameters: weight: 1 density: 1 - model: preemware/Prox-MistralHermes-7B parameters: weight: 1 density: 1 merge_method: ties base_model: JoPmt/Trismal-NeurAmoclion-7B-Base-Ties parameters: weight: 1 density: 1 normalize: true int8_mask: false dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "JoPmt/Trismal-Xyro-7B-Base-Ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```