JulietLJY commited on
Commit
a6de97b
·
1 Parent(s): 21d1c70
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/nas-alinlp/ljy/models/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step400
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:004837c939afeae91abce8eecdb564fc0838c03e08a5f1de44b3f9b489e2c578
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea1a72d13f78be9a52f3fedaec45aeb3d97398e6712f63fd7667c790cf72ed27
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3092ce196184e05d62c85634517eb714fedfc467c0b56fe2017c3bd9d277ed56
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bb178f89265f1b7867b56914cc714d05e29583a2972a9394e5529962bc8bcdc
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ae391aef85b7ae8d361e1d8c0e25981b5c0ba9226651ffdcd3a6332615f467b
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.08187912594033059,
5
+ "eval_steps": 500,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00020469781485082646,
13
+ "grad_norm": 1.694807571622714,
14
+ "learning_rate": 1.3605442176870747e-08,
15
+ "loss": 0.6346,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0004093956297016529,
20
+ "grad_norm": 1.7333604659657242,
21
+ "learning_rate": 2.7210884353741493e-08,
22
+ "loss": 0.5956,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0006140934445524794,
27
+ "grad_norm": 1.675170156463719,
28
+ "learning_rate": 4.081632653061224e-08,
29
+ "loss": 0.6494,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0008187912594033058,
34
+ "grad_norm": 1.4535412459526658,
35
+ "learning_rate": 5.442176870748299e-08,
36
+ "loss": 0.6097,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.0010234890742541324,
41
+ "grad_norm": 1.6204240919715567,
42
+ "learning_rate": 6.802721088435375e-08,
43
+ "loss": 0.6259,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0012281868891049587,
48
+ "grad_norm": 1.6382909584778356,
49
+ "learning_rate": 8.163265306122448e-08,
50
+ "loss": 0.6049,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0014328847039557853,
55
+ "grad_norm": 1.6591863389965569,
56
+ "learning_rate": 9.523809523809523e-08,
57
+ "loss": 0.6093,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0016375825188066117,
62
+ "grad_norm": 1.529188807208944,
63
+ "learning_rate": 1.0884353741496597e-07,
64
+ "loss": 0.625,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0018422803336574382,
69
+ "grad_norm": 1.7414059653199376,
70
+ "learning_rate": 1.2244897959183673e-07,
71
+ "loss": 0.6148,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.002046978148508265,
76
+ "grad_norm": 1.6622320550472127,
77
+ "learning_rate": 1.360544217687075e-07,
78
+ "loss": 0.5797,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.002251675963359091,
83
+ "grad_norm": 1.6508189144245708,
84
+ "learning_rate": 1.4965986394557823e-07,
85
+ "loss": 0.6484,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0024563737782099175,
90
+ "grad_norm": 1.7202133207821506,
91
+ "learning_rate": 1.6326530612244896e-07,
92
+ "loss": 0.6216,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0026610715930607443,
97
+ "grad_norm": 1.5235060143030161,
98
+ "learning_rate": 1.7687074829931972e-07,
99
+ "loss": 0.6452,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0028657694079115706,
104
+ "grad_norm": 1.5363560852946705,
105
+ "learning_rate": 1.9047619047619045e-07,
106
+ "loss": 0.6405,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.003070467222762397,
111
+ "grad_norm": 1.6730999257251689,
112
+ "learning_rate": 2.0408163265306121e-07,
113
+ "loss": 0.6497,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0032751650376132233,
118
+ "grad_norm": 1.5758327138243107,
119
+ "learning_rate": 2.1768707482993195e-07,
120
+ "loss": 0.6336,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.00347986285246405,
125
+ "grad_norm": 1.5492535238923828,
126
+ "learning_rate": 2.312925170068027e-07,
127
+ "loss": 0.6037,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0036845606673148765,
132
+ "grad_norm": 1.6696926699572276,
133
+ "learning_rate": 2.4489795918367347e-07,
134
+ "loss": 0.6139,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.003889258482165703,
139
+ "grad_norm": 1.6544769292475,
140
+ "learning_rate": 2.5850340136054423e-07,
141
+ "loss": 0.6315,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.00409395629701653,
146
+ "grad_norm": 1.6860896587110352,
147
+ "learning_rate": 2.72108843537415e-07,
148
+ "loss": 0.6324,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0042986541118673555,
153
+ "grad_norm": 1.5451565683271684,
154
+ "learning_rate": 2.857142857142857e-07,
155
+ "loss": 0.6227,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.004503351926718182,
160
+ "grad_norm": 1.5658617650258626,
161
+ "learning_rate": 2.9931972789115645e-07,
162
+ "loss": 0.5873,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.004708049741569009,
167
+ "grad_norm": 1.6014268573351107,
168
+ "learning_rate": 3.129251700680272e-07,
169
+ "loss": 0.6066,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.004912747556419835,
174
+ "grad_norm": 1.560124972985785,
175
+ "learning_rate": 3.265306122448979e-07,
176
+ "loss": 0.6062,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.005117445371270662,
181
+ "grad_norm": 1.6662191020723245,
182
+ "learning_rate": 3.401360544217687e-07,
183
+ "loss": 0.5968,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0053221431861214885,
188
+ "grad_norm": 1.7137595321931511,
189
+ "learning_rate": 3.5374149659863944e-07,
190
+ "loss": 0.6325,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0055268410009723145,
195
+ "grad_norm": 1.570188696390546,
196
+ "learning_rate": 3.673469387755102e-07,
197
+ "loss": 0.6375,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.005731538815823141,
202
+ "grad_norm": 1.5585726347237283,
203
+ "learning_rate": 3.809523809523809e-07,
204
+ "loss": 0.6216,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.005936236630673967,
209
+ "grad_norm": 1.4585947364133294,
210
+ "learning_rate": 3.9455782312925167e-07,
211
+ "loss": 0.5975,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.006140934445524794,
216
+ "grad_norm": 1.5313204391085877,
217
+ "learning_rate": 4.0816326530612243e-07,
218
+ "loss": 0.6461,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.006345632260375621,
223
+ "grad_norm": 1.4690318982818216,
224
+ "learning_rate": 4.217687074829932e-07,
225
+ "loss": 0.6054,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.006550330075226447,
230
+ "grad_norm": 1.5256726957060316,
231
+ "learning_rate": 4.353741496598639e-07,
232
+ "loss": 0.6507,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.006755027890077273,
237
+ "grad_norm": 1.541131533646238,
238
+ "learning_rate": 4.4897959183673465e-07,
239
+ "loss": 0.6185,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.0069597257049281,
244
+ "grad_norm": 1.5233070330699345,
245
+ "learning_rate": 4.625850340136054e-07,
246
+ "loss": 0.6541,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.007164423519778926,
251
+ "grad_norm": 1.4300240195672376,
252
+ "learning_rate": 4.761904761904761e-07,
253
+ "loss": 0.6156,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.007369121334629753,
258
+ "grad_norm": 1.3386118655838508,
259
+ "learning_rate": 4.897959183673469e-07,
260
+ "loss": 0.5943,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.00757381914948058,
265
+ "grad_norm": 1.3270928639031936,
266
+ "learning_rate": 5.034013605442177e-07,
267
+ "loss": 0.6139,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.007778516964331406,
272
+ "grad_norm": 1.3116129547815811,
273
+ "learning_rate": 5.170068027210885e-07,
274
+ "loss": 0.6119,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.007983214779182232,
279
+ "grad_norm": 1.2451803048665653,
280
+ "learning_rate": 5.306122448979592e-07,
281
+ "loss": 0.5463,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.00818791259403306,
286
+ "grad_norm": 1.2351915311334578,
287
+ "learning_rate": 5.4421768707483e-07,
288
+ "loss": 0.5762,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.008392610408883885,
293
+ "grad_norm": 1.3425104949855924,
294
+ "learning_rate": 5.578231292517006e-07,
295
+ "loss": 0.5866,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.008597308223734711,
300
+ "grad_norm": 1.3464358053560985,
301
+ "learning_rate": 5.714285714285714e-07,
302
+ "loss": 0.6134,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.008802006038585539,
307
+ "grad_norm": 1.3225968492677225,
308
+ "learning_rate": 5.850340136054421e-07,
309
+ "loss": 0.6034,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.009006703853436365,
314
+ "grad_norm": 1.2483346937333237,
315
+ "learning_rate": 5.986394557823129e-07,
316
+ "loss": 0.5495,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.00921140166828719,
321
+ "grad_norm": 1.1648688787665145,
322
+ "learning_rate": 6.122448979591837e-07,
323
+ "loss": 0.616,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.009416099483138018,
328
+ "grad_norm": 1.2616996144445687,
329
+ "learning_rate": 6.258503401360544e-07,
330
+ "loss": 0.57,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.009620797297988844,
335
+ "grad_norm": 1.3108653064941627,
336
+ "learning_rate": 6.394557823129252e-07,
337
+ "loss": 0.5814,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.00982549511283967,
342
+ "grad_norm": 1.1754918916726766,
343
+ "learning_rate": 6.530612244897958e-07,
344
+ "loss": 0.5754,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.010030192927690498,
349
+ "grad_norm": 1.272022559229399,
350
+ "learning_rate": 6.666666666666666e-07,
351
+ "loss": 0.5944,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.010234890742541324,
356
+ "grad_norm": 1.13107848406085,
357
+ "learning_rate": 6.802721088435374e-07,
358
+ "loss": 0.5945,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.01043958855739215,
363
+ "grad_norm": 1.1273813534766033,
364
+ "learning_rate": 6.938775510204081e-07,
365
+ "loss": 0.5538,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.010644286372242977,
370
+ "grad_norm": 1.1293664677810216,
371
+ "learning_rate": 7.074829931972789e-07,
372
+ "loss": 0.5854,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.010848984187093803,
377
+ "grad_norm": 0.9728651370750258,
378
+ "learning_rate": 7.210884353741496e-07,
379
+ "loss": 0.5108,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.011053682001944629,
384
+ "grad_norm": 1.0432420839745669,
385
+ "learning_rate": 7.346938775510204e-07,
386
+ "loss": 0.5346,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.011258379816795457,
391
+ "grad_norm": 1.0023551080535893,
392
+ "learning_rate": 7.482993197278912e-07,
393
+ "loss": 0.5799,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.011463077631646282,
398
+ "grad_norm": 0.9638908320867696,
399
+ "learning_rate": 7.619047619047618e-07,
400
+ "loss": 0.555,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.011667775446497108,
405
+ "grad_norm": 1.0398584356633989,
406
+ "learning_rate": 7.755102040816326e-07,
407
+ "loss": 0.5147,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.011872473261347934,
412
+ "grad_norm": 0.9629896909635629,
413
+ "learning_rate": 7.891156462585033e-07,
414
+ "loss": 0.5413,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.012077171076198762,
419
+ "grad_norm": 0.9770292637339174,
420
+ "learning_rate": 8.027210884353741e-07,
421
+ "loss": 0.5205,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.012281868891049588,
426
+ "grad_norm": 0.971945782703798,
427
+ "learning_rate": 8.163265306122449e-07,
428
+ "loss": 0.5422,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.012486566705900414,
433
+ "grad_norm": 0.950398975311517,
434
+ "learning_rate": 8.299319727891156e-07,
435
+ "loss": 0.5071,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.012691264520751241,
440
+ "grad_norm": 0.9049285150490526,
441
+ "learning_rate": 8.435374149659864e-07,
442
+ "loss": 0.4964,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.012895962335602067,
447
+ "grad_norm": 0.8793095995125478,
448
+ "learning_rate": 8.57142857142857e-07,
449
+ "loss": 0.5331,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.013100660150452893,
454
+ "grad_norm": 0.8515461613654705,
455
+ "learning_rate": 8.707482993197278e-07,
456
+ "loss": 0.5283,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.013305357965303721,
461
+ "grad_norm": 0.867859420385022,
462
+ "learning_rate": 8.843537414965985e-07,
463
+ "loss": 0.5164,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.013510055780154547,
468
+ "grad_norm": 0.8786706131313361,
469
+ "learning_rate": 8.979591836734693e-07,
470
+ "loss": 0.5645,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.013714753595005373,
475
+ "grad_norm": 0.8579092596142676,
476
+ "learning_rate": 9.115646258503401e-07,
477
+ "loss": 0.5399,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.0139194514098562,
482
+ "grad_norm": 0.8773908463960428,
483
+ "learning_rate": 9.251700680272108e-07,
484
+ "loss": 0.5229,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.014124149224707026,
489
+ "grad_norm": 0.8528366708567172,
490
+ "learning_rate": 9.387755102040816e-07,
491
+ "loss": 0.5349,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.014328847039557852,
496
+ "grad_norm": 0.9184139371914097,
497
+ "learning_rate": 9.523809523809522e-07,
498
+ "loss": 0.5331,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.01453354485440868,
503
+ "grad_norm": 0.8507461371837629,
504
+ "learning_rate": 9.65986394557823e-07,
505
+ "loss": 0.4801,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.014738242669259506,
510
+ "grad_norm": 0.8374936253263676,
511
+ "learning_rate": 9.795918367346939e-07,
512
+ "loss": 0.4931,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.014942940484110332,
517
+ "grad_norm": 0.8174848059151317,
518
+ "learning_rate": 9.931972789115645e-07,
519
+ "loss": 0.5248,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.01514763829896116,
524
+ "grad_norm": 0.8174077531772923,
525
+ "learning_rate": 1.0068027210884354e-06,
526
+ "loss": 0.5036,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.015352336113811985,
531
+ "grad_norm": 0.7262562022534738,
532
+ "learning_rate": 1.020408163265306e-06,
533
+ "loss": 0.5232,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.015557033928662811,
538
+ "grad_norm": 0.7855250505927771,
539
+ "learning_rate": 1.034013605442177e-06,
540
+ "loss": 0.5098,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.015761731743513637,
545
+ "grad_norm": 0.8278680336215173,
546
+ "learning_rate": 1.0476190476190476e-06,
547
+ "loss": 0.4829,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.015966429558364463,
552
+ "grad_norm": 0.797196328457245,
553
+ "learning_rate": 1.0612244897959184e-06,
554
+ "loss": 0.5037,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.016171127373215292,
559
+ "grad_norm": 0.7507210642711485,
560
+ "learning_rate": 1.074829931972789e-06,
561
+ "loss": 0.4944,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.01637582518806612,
566
+ "grad_norm": 0.826047544790976,
567
+ "learning_rate": 1.08843537414966e-06,
568
+ "loss": 0.5179,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.016580523002916944,
573
+ "grad_norm": 0.7746315656318813,
574
+ "learning_rate": 1.1020408163265304e-06,
575
+ "loss": 0.5223,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.01678522081776777,
580
+ "grad_norm": 0.778762710130468,
581
+ "learning_rate": 1.1156462585034013e-06,
582
+ "loss": 0.4845,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.016989918632618596,
587
+ "grad_norm": 0.749908717861716,
588
+ "learning_rate": 1.129251700680272e-06,
589
+ "loss": 0.5175,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.017194616447469422,
594
+ "grad_norm": 0.7582554704845739,
595
+ "learning_rate": 1.1428571428571428e-06,
596
+ "loss": 0.4978,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.01739931426232025,
601
+ "grad_norm": 0.7595367961287336,
602
+ "learning_rate": 1.1564625850340134e-06,
603
+ "loss": 0.4966,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.017604012077171077,
608
+ "grad_norm": 0.7488555001974914,
609
+ "learning_rate": 1.1700680272108843e-06,
610
+ "loss": 0.5025,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.017808709892021903,
615
+ "grad_norm": 0.8307772703305798,
616
+ "learning_rate": 1.183673469387755e-06,
617
+ "loss": 0.5144,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.01801340770687273,
622
+ "grad_norm": 0.7317615547098743,
623
+ "learning_rate": 1.1972789115646258e-06,
624
+ "loss": 0.4817,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.018218105521723555,
629
+ "grad_norm": 0.8210594860542216,
630
+ "learning_rate": 1.2108843537414965e-06,
631
+ "loss": 0.5058,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.01842280333657438,
636
+ "grad_norm": 0.7250535412206353,
637
+ "learning_rate": 1.2244897959183673e-06,
638
+ "loss": 0.4796,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.018627501151425207,
643
+ "grad_norm": 0.7476633557284366,
644
+ "learning_rate": 1.238095238095238e-06,
645
+ "loss": 0.4732,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.018832198966276036,
650
+ "grad_norm": 0.7245302420505394,
651
+ "learning_rate": 1.2517006802721089e-06,
652
+ "loss": 0.5085,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.019036896781126862,
657
+ "grad_norm": 0.7287781044325405,
658
+ "learning_rate": 1.2653061224489795e-06,
659
+ "loss": 0.4837,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.019241594595977688,
664
+ "grad_norm": 0.7461257075758424,
665
+ "learning_rate": 1.2789115646258504e-06,
666
+ "loss": 0.4847,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.019446292410828514,
671
+ "grad_norm": 0.7500567577642135,
672
+ "learning_rate": 1.292517006802721e-06,
673
+ "loss": 0.5023,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.01965099022567934,
678
+ "grad_norm": 0.7516926737451503,
679
+ "learning_rate": 1.3061224489795917e-06,
680
+ "loss": 0.4944,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.019855688040530166,
685
+ "grad_norm": 0.8160475040600308,
686
+ "learning_rate": 1.3197278911564623e-06,
687
+ "loss": 0.4707,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.020060385855380995,
692
+ "grad_norm": 0.7313987935291313,
693
+ "learning_rate": 1.3333333333333332e-06,
694
+ "loss": 0.4631,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.02026508367023182,
699
+ "grad_norm": 0.7272827048713341,
700
+ "learning_rate": 1.3469387755102039e-06,
701
+ "loss": 0.4912,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.020469781485082647,
706
+ "grad_norm": 0.7148392974765637,
707
+ "learning_rate": 1.3605442176870747e-06,
708
+ "loss": 0.4686,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.020674479299933473,
713
+ "grad_norm": 0.8073254642999934,
714
+ "learning_rate": 1.3741496598639456e-06,
715
+ "loss": 0.4889,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.0208791771147843,
720
+ "grad_norm": 0.7585784341693678,
721
+ "learning_rate": 1.3877551020408162e-06,
722
+ "loss": 0.4661,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.021083874929635125,
727
+ "grad_norm": 0.750059071249337,
728
+ "learning_rate": 1.4013605442176871e-06,
729
+ "loss": 0.4856,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.021288572744485954,
734
+ "grad_norm": 0.7391246566572075,
735
+ "learning_rate": 1.4149659863945578e-06,
736
+ "loss": 0.4835,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.02149327055933678,
741
+ "grad_norm": 0.7961401475792825,
742
+ "learning_rate": 1.4285714285714286e-06,
743
+ "loss": 0.5078,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.021697968374187606,
748
+ "grad_norm": 0.736443177126423,
749
+ "learning_rate": 1.4421768707482993e-06,
750
+ "loss": 0.4754,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.021902666189038432,
755
+ "grad_norm": 0.7433000385873849,
756
+ "learning_rate": 1.4557823129251701e-06,
757
+ "loss": 0.5051,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.022107364003889258,
762
+ "grad_norm": 0.742852894387874,
763
+ "learning_rate": 1.4693877551020408e-06,
764
+ "loss": 0.4815,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.022312061818740084,
769
+ "grad_norm": 0.7321778169129644,
770
+ "learning_rate": 1.4829931972789117e-06,
771
+ "loss": 0.4883,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.022516759633590913,
776
+ "grad_norm": 0.7374200652655346,
777
+ "learning_rate": 1.4965986394557823e-06,
778
+ "loss": 0.5235,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.02272145744844174,
783
+ "grad_norm": 0.772981855244519,
784
+ "learning_rate": 1.510204081632653e-06,
785
+ "loss": 0.5008,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.022926155263292565,
790
+ "grad_norm": 0.7342674795579016,
791
+ "learning_rate": 1.5238095238095236e-06,
792
+ "loss": 0.4671,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.02313085307814339,
797
+ "grad_norm": 0.7795902315585469,
798
+ "learning_rate": 1.5374149659863945e-06,
799
+ "loss": 0.507,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.023335550892994217,
804
+ "grad_norm": 0.7765099211131105,
805
+ "learning_rate": 1.5510204081632651e-06,
806
+ "loss": 0.5251,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.023540248707845043,
811
+ "grad_norm": 0.7386929957340117,
812
+ "learning_rate": 1.564625850340136e-06,
813
+ "loss": 0.4578,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.02374494652269587,
818
+ "grad_norm": 0.7248512159636582,
819
+ "learning_rate": 1.5782312925170067e-06,
820
+ "loss": 0.48,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.023949644337546698,
825
+ "grad_norm": 0.7545806311647761,
826
+ "learning_rate": 1.5918367346938775e-06,
827
+ "loss": 0.4884,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.024154342152397524,
832
+ "grad_norm": 0.7683287783699582,
833
+ "learning_rate": 1.6054421768707482e-06,
834
+ "loss": 0.4834,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.02435903996724835,
839
+ "grad_norm": 0.775426549385026,
840
+ "learning_rate": 1.619047619047619e-06,
841
+ "loss": 0.4822,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.024563737782099176,
846
+ "grad_norm": 0.7149469826873975,
847
+ "learning_rate": 1.6326530612244897e-06,
848
+ "loss": 0.4721,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.02476843559695,
853
+ "grad_norm": 0.7985393152422335,
854
+ "learning_rate": 1.6462585034013606e-06,
855
+ "loss": 0.5166,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.024973133411800828,
860
+ "grad_norm": 0.7885248764092557,
861
+ "learning_rate": 1.6598639455782312e-06,
862
+ "loss": 0.5091,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.025177831226651657,
867
+ "grad_norm": 0.7531097232781883,
868
+ "learning_rate": 1.673469387755102e-06,
869
+ "loss": 0.5133,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.025382529041502483,
874
+ "grad_norm": 0.7097213698861701,
875
+ "learning_rate": 1.6870748299319727e-06,
876
+ "loss": 0.5001,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.02558722685635331,
881
+ "grad_norm": 0.6936318152279768,
882
+ "learning_rate": 1.7006802721088434e-06,
883
+ "loss": 0.4611,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.025791924671204135,
888
+ "grad_norm": 0.7442480820206602,
889
+ "learning_rate": 1.714285714285714e-06,
890
+ "loss": 0.5107,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.02599662248605496,
895
+ "grad_norm": 0.7310368101162509,
896
+ "learning_rate": 1.727891156462585e-06,
897
+ "loss": 0.4568,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.026201320300905787,
902
+ "grad_norm": 0.7723563494615043,
903
+ "learning_rate": 1.7414965986394556e-06,
904
+ "loss": 0.4976,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.026406018115756616,
909
+ "grad_norm": 0.7688284872373655,
910
+ "learning_rate": 1.7551020408163264e-06,
911
+ "loss": 0.4876,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.026610715930607442,
916
+ "grad_norm": 0.7663908612309938,
917
+ "learning_rate": 1.768707482993197e-06,
918
+ "loss": 0.5089,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.026815413745458268,
923
+ "grad_norm": 0.6966352320510637,
924
+ "learning_rate": 1.782312925170068e-06,
925
+ "loss": 0.4537,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.027020111560309094,
930
+ "grad_norm": 0.6933747179682217,
931
+ "learning_rate": 1.7959183673469386e-06,
932
+ "loss": 0.4431,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.02722480937515992,
937
+ "grad_norm": 0.7620187715357651,
938
+ "learning_rate": 1.8095238095238095e-06,
939
+ "loss": 0.5002,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.027429507190010746,
944
+ "grad_norm": 0.694229773433825,
945
+ "learning_rate": 1.8231292517006801e-06,
946
+ "loss": 0.4602,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.02763420500486157,
951
+ "grad_norm": 0.7152627743695282,
952
+ "learning_rate": 1.836734693877551e-06,
953
+ "loss": 0.46,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.0278389028197124,
958
+ "grad_norm": 0.7175467946942147,
959
+ "learning_rate": 1.8503401360544217e-06,
960
+ "loss": 0.4687,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.028043600634563227,
965
+ "grad_norm": 0.7852808070086453,
966
+ "learning_rate": 1.8639455782312925e-06,
967
+ "loss": 0.5045,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.028248298449414053,
972
+ "grad_norm": 0.7212069697520485,
973
+ "learning_rate": 1.8775510204081632e-06,
974
+ "loss": 0.458,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.02845299626426488,
979
+ "grad_norm": 0.6901869666091209,
980
+ "learning_rate": 1.891156462585034e-06,
981
+ "loss": 0.4873,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.028657694079115704,
986
+ "grad_norm": 0.7038286804084832,
987
+ "learning_rate": 1.9047619047619045e-06,
988
+ "loss": 0.4575,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.02886239189396653,
993
+ "grad_norm": 0.7736514303776025,
994
+ "learning_rate": 1.918367346938775e-06,
995
+ "loss": 0.4989,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.02906708970881736,
1000
+ "grad_norm": 0.7546506061753928,
1001
+ "learning_rate": 1.931972789115646e-06,
1002
+ "loss": 0.6157,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.029271787523668186,
1007
+ "grad_norm": 0.7502287441885653,
1008
+ "learning_rate": 1.945578231292517e-06,
1009
+ "loss": 0.4744,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.02947648533851901,
1014
+ "grad_norm": 0.7544747394474504,
1015
+ "learning_rate": 1.9591836734693877e-06,
1016
+ "loss": 0.4652,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.029681183153369838,
1021
+ "grad_norm": 0.7400203790224271,
1022
+ "learning_rate": 1.972789115646258e-06,
1023
+ "loss": 0.4749,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.029885880968220663,
1028
+ "grad_norm": 0.7756604473816919,
1029
+ "learning_rate": 1.986394557823129e-06,
1030
+ "loss": 0.4879,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.03009057878307149,
1035
+ "grad_norm": 0.7364241267157726,
1036
+ "learning_rate": 2e-06,
1037
+ "loss": 0.4641,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.03029527659792232,
1042
+ "grad_norm": 0.7509999341558731,
1043
+ "learning_rate": 1.9999997801737146e-06,
1044
+ "loss": 0.4716,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.030499974412773145,
1049
+ "grad_norm": 0.7817167258395246,
1050
+ "learning_rate": 1.9999991206949555e-06,
1051
+ "loss": 0.478,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.03070467222762397,
1056
+ "grad_norm": 0.6975681554994494,
1057
+ "learning_rate": 1.9999980215640124e-06,
1058
+ "loss": 0.4698,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.030909370042474796,
1063
+ "grad_norm": 0.6671508819481775,
1064
+ "learning_rate": 1.9999964827813685e-06,
1065
+ "loss": 0.4502,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.031114067857325622,
1070
+ "grad_norm": 0.7588040820967348,
1071
+ "learning_rate": 1.9999945043477006e-06,
1072
+ "loss": 0.4932,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.03131876567217645,
1077
+ "grad_norm": 0.7918237654214221,
1078
+ "learning_rate": 1.9999920862638785e-06,
1079
+ "loss": 0.4676,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.031523463487027274,
1084
+ "grad_norm": 0.7313481708497578,
1085
+ "learning_rate": 1.999989228530965e-06,
1086
+ "loss": 0.458,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.031728161301878104,
1091
+ "grad_norm": 0.7363675329922608,
1092
+ "learning_rate": 1.9999859311502164e-06,
1093
+ "loss": 0.4794,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.031932859116728926,
1098
+ "grad_norm": 0.7511639384926047,
1099
+ "learning_rate": 1.999982194123083e-06,
1100
+ "loss": 0.4811,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.032137556931579755,
1105
+ "grad_norm": 0.6977601768137399,
1106
+ "learning_rate": 1.9999780174512074e-06,
1107
+ "loss": 0.5046,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.032342254746430585,
1112
+ "grad_norm": 0.6871160044462953,
1113
+ "learning_rate": 1.999973401136426e-06,
1114
+ "loss": 0.4473,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.03254695256128141,
1119
+ "grad_norm": 0.735276225575691,
1120
+ "learning_rate": 1.999968345180768e-06,
1121
+ "loss": 0.4769,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.03275165037613224,
1126
+ "grad_norm": 0.6707772270842888,
1127
+ "learning_rate": 1.999962849586457e-06,
1128
+ "loss": 0.4395,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.03295634819098306,
1133
+ "grad_norm": 0.7714337406838349,
1134
+ "learning_rate": 1.9999569143559085e-06,
1135
+ "loss": 0.4658,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.03316104600583389,
1140
+ "grad_norm": 0.7896606525524605,
1141
+ "learning_rate": 1.999950539491732e-06,
1142
+ "loss": 0.4645,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.03336574382068471,
1147
+ "grad_norm": 0.7359544675011239,
1148
+ "learning_rate": 1.999943724996731e-06,
1149
+ "loss": 0.4671,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.03357044163553554,
1154
+ "grad_norm": 0.6942155729771998,
1155
+ "learning_rate": 1.9999364708739005e-06,
1156
+ "loss": 0.4567,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.03377513945038637,
1161
+ "grad_norm": 0.7156881239994389,
1162
+ "learning_rate": 1.9999287771264305e-06,
1163
+ "loss": 0.4871,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.03397983726523719,
1168
+ "grad_norm": 0.7027330885247588,
1169
+ "learning_rate": 1.999920643757703e-06,
1170
+ "loss": 0.4371,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.03418453508008802,
1175
+ "grad_norm": 0.7022489082551948,
1176
+ "learning_rate": 1.9999120707712943e-06,
1177
+ "loss": 0.45,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.034389232894938844,
1182
+ "grad_norm": 0.7600832151805308,
1183
+ "learning_rate": 1.9999030581709736e-06,
1184
+ "loss": 0.4812,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.03459393070978967,
1189
+ "grad_norm": 0.7757365362216246,
1190
+ "learning_rate": 1.9998936059607028e-06,
1191
+ "loss": 0.4951,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.0347986285246405,
1196
+ "grad_norm": 0.7180624522326351,
1197
+ "learning_rate": 1.9998837141446378e-06,
1198
+ "loss": 0.4733,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.035003326339491325,
1203
+ "grad_norm": 0.8012677566963108,
1204
+ "learning_rate": 1.9998733827271277e-06,
1205
+ "loss": 0.4854,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.035208024154342155,
1210
+ "grad_norm": 0.715314370525801,
1211
+ "learning_rate": 1.999862611712715e-06,
1212
+ "loss": 0.4777,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.03541272196919298,
1217
+ "grad_norm": 0.7191382757417352,
1218
+ "learning_rate": 1.9998514011061344e-06,
1219
+ "loss": 0.4637,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.035617419784043806,
1224
+ "grad_norm": 0.7116753984408628,
1225
+ "learning_rate": 1.9998397509123154e-06,
1226
+ "loss": 0.4536,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.03582211759889463,
1231
+ "grad_norm": 0.7598078550909712,
1232
+ "learning_rate": 1.9998276611363797e-06,
1233
+ "loss": 0.4908,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.03602681541374546,
1238
+ "grad_norm": 0.6563039003765047,
1239
+ "learning_rate": 1.999815131783643e-06,
1240
+ "loss": 0.449,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.03623151322859629,
1245
+ "grad_norm": 0.719561949641505,
1246
+ "learning_rate": 1.999802162859613e-06,
1247
+ "loss": 0.4741,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.03643621104344711,
1252
+ "grad_norm": 0.7109902438469043,
1253
+ "learning_rate": 1.999788754369993e-06,
1254
+ "loss": 0.4701,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.03664090885829794,
1259
+ "grad_norm": 0.7065392449298251,
1260
+ "learning_rate": 1.9997749063206762e-06,
1261
+ "loss": 0.4714,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.03684560667314876,
1266
+ "grad_norm": 0.7696360740535267,
1267
+ "learning_rate": 1.9997606187177524e-06,
1268
+ "loss": 0.4875,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.03705030448799959,
1273
+ "grad_norm": 0.7305783700088637,
1274
+ "learning_rate": 1.999745891567502e-06,
1275
+ "loss": 0.4606,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.037255002302850414,
1280
+ "grad_norm": 0.7270975727384246,
1281
+ "learning_rate": 1.9997307248764014e-06,
1282
+ "loss": 0.4198,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.03745970011770124,
1287
+ "grad_norm": 0.7569285986642791,
1288
+ "learning_rate": 1.9997151186511173e-06,
1289
+ "loss": 0.4354,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.03766439793255207,
1294
+ "grad_norm": 0.7219339206651326,
1295
+ "learning_rate": 1.9996990728985115e-06,
1296
+ "loss": 0.4378,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.037869095747402895,
1301
+ "grad_norm": 0.7690405011750759,
1302
+ "learning_rate": 1.9996825876256386e-06,
1303
+ "loss": 0.4791,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.038073793562253724,
1308
+ "grad_norm": 0.7552362068529521,
1309
+ "learning_rate": 1.9996656628397466e-06,
1310
+ "loss": 0.4672,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.03827849137710455,
1315
+ "grad_norm": 0.7341580278198813,
1316
+ "learning_rate": 1.999648298548276e-06,
1317
+ "loss": 0.4677,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.038483189191955376,
1322
+ "grad_norm": 0.7067121453226938,
1323
+ "learning_rate": 1.9996304947588612e-06,
1324
+ "loss": 0.4727,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.038687887006806206,
1329
+ "grad_norm": 0.7237165727925357,
1330
+ "learning_rate": 1.99961225147933e-06,
1331
+ "loss": 0.4446,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.03889258482165703,
1336
+ "grad_norm": 0.7069486805133093,
1337
+ "learning_rate": 1.999593568717703e-06,
1338
+ "loss": 0.4599,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.03909728263650786,
1343
+ "grad_norm": 0.897481774030034,
1344
+ "learning_rate": 1.9995744464821936e-06,
1345
+ "loss": 0.5129,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.03930198045135868,
1350
+ "grad_norm": 0.7488636278687589,
1351
+ "learning_rate": 1.9995548847812097e-06,
1352
+ "loss": 0.5184,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.03950667826620951,
1357
+ "grad_norm": 0.7194583225483666,
1358
+ "learning_rate": 1.9995348836233515e-06,
1359
+ "loss": 0.4915,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.03971137608106033,
1364
+ "grad_norm": 0.7384378767131218,
1365
+ "learning_rate": 1.999514443017412e-06,
1366
+ "loss": 0.4487,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.03991607389591116,
1371
+ "grad_norm": 0.7577332351147034,
1372
+ "learning_rate": 1.9994935629723784e-06,
1373
+ "loss": 0.4842,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.04012077171076199,
1378
+ "grad_norm": 0.7207002083905842,
1379
+ "learning_rate": 1.999472243497431e-06,
1380
+ "loss": 0.4698,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.04032546952561281,
1385
+ "grad_norm": 0.8010492120535461,
1386
+ "learning_rate": 1.9994504846019423e-06,
1387
+ "loss": 0.4561,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.04053016734046364,
1392
+ "grad_norm": 0.7453701461541147,
1393
+ "learning_rate": 1.9994282862954787e-06,
1394
+ "loss": 0.4806,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.040734865155314465,
1399
+ "grad_norm": 0.7255193966716207,
1400
+ "learning_rate": 1.9994056485878002e-06,
1401
+ "loss": 0.4511,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.040939562970165294,
1406
+ "grad_norm": 0.7957588909816856,
1407
+ "learning_rate": 1.9993825714888594e-06,
1408
+ "loss": 0.4775,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.04114426078501612,
1413
+ "grad_norm": 0.7304580504624026,
1414
+ "learning_rate": 1.999359055008802e-06,
1415
+ "loss": 0.4476,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.041348958599866946,
1420
+ "grad_norm": 0.8052138479705295,
1421
+ "learning_rate": 1.999335099157967e-06,
1422
+ "loss": 0.4621,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.041553656414717775,
1427
+ "grad_norm": 0.7344879094324241,
1428
+ "learning_rate": 1.999310703946887e-06,
1429
+ "loss": 0.448,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.0417583542295686,
1434
+ "grad_norm": 0.804269507197302,
1435
+ "learning_rate": 1.999285869386287e-06,
1436
+ "loss": 0.471,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.04196305204441943,
1441
+ "grad_norm": 0.7284627322104599,
1442
+ "learning_rate": 1.9992605954870867e-06,
1443
+ "loss": 0.4418,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.04216774985927025,
1448
+ "grad_norm": 0.7243013667651625,
1449
+ "learning_rate": 1.999234882260396e-06,
1450
+ "loss": 0.4669,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.04237244767412108,
1455
+ "grad_norm": 0.677583318692503,
1456
+ "learning_rate": 1.9992087297175213e-06,
1457
+ "loss": 0.4447,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.04257714548897191,
1462
+ "grad_norm": 0.7334595699121094,
1463
+ "learning_rate": 1.9991821378699598e-06,
1464
+ "loss": 0.4719,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.04278184330382273,
1469
+ "grad_norm": 0.7351912069847943,
1470
+ "learning_rate": 1.999155106729403e-06,
1471
+ "loss": 0.4758,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.04298654111867356,
1476
+ "grad_norm": 0.7262994043092325,
1477
+ "learning_rate": 1.9991276363077355e-06,
1478
+ "loss": 0.4636,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.04319123893352438,
1483
+ "grad_norm": 0.7170624975773432,
1484
+ "learning_rate": 1.999099726617034e-06,
1485
+ "loss": 0.4432,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.04339593674837521,
1490
+ "grad_norm": 0.7756861925710989,
1491
+ "learning_rate": 1.9990713776695697e-06,
1492
+ "loss": 0.4277,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.043600634563226034,
1497
+ "grad_norm": 0.7766290291464314,
1498
+ "learning_rate": 1.999042589477806e-06,
1499
+ "loss": 0.4521,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.043805332378076864,
1504
+ "grad_norm": 0.7675003445260637,
1505
+ "learning_rate": 1.9990133620543992e-06,
1506
+ "loss": 0.4728,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.04401003019292769,
1511
+ "grad_norm": 0.7502537566865808,
1512
+ "learning_rate": 1.9989836954122006e-06,
1513
+ "loss": 0.4919,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.044214728007778516,
1518
+ "grad_norm": 0.7256221777073304,
1519
+ "learning_rate": 1.998953589564252e-06,
1520
+ "loss": 0.4427,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.044419425822629345,
1525
+ "grad_norm": 0.7209802907423725,
1526
+ "learning_rate": 1.9989230445237905e-06,
1527
+ "loss": 0.4482,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.04462412363748017,
1532
+ "grad_norm": 0.761848969478383,
1533
+ "learning_rate": 1.9988920603042437e-06,
1534
+ "loss": 0.4623,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.044828821452331,
1539
+ "grad_norm": 0.7511377700619639,
1540
+ "learning_rate": 1.9988606369192357e-06,
1541
+ "loss": 0.4695,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.045033519267181826,
1546
+ "grad_norm": 0.684910692983434,
1547
+ "learning_rate": 1.998828774382581e-06,
1548
+ "loss": 0.4546,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.04523821708203265,
1553
+ "grad_norm": 0.8229255435418116,
1554
+ "learning_rate": 1.998796472708288e-06,
1555
+ "loss": 0.4736,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.04544291489688348,
1560
+ "grad_norm": 0.7208349457907924,
1561
+ "learning_rate": 1.998763731910558e-06,
1562
+ "loss": 0.4464,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.0456476127117343,
1567
+ "grad_norm": 0.8196660504458043,
1568
+ "learning_rate": 1.998730552003786e-06,
1569
+ "loss": 0.5129,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.04585231052658513,
1574
+ "grad_norm": 0.7410783352083353,
1575
+ "learning_rate": 1.99869693300256e-06,
1576
+ "loss": 0.4716,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.04605700834143595,
1581
+ "grad_norm": 0.6829979843011463,
1582
+ "learning_rate": 1.9986628749216598e-06,
1583
+ "loss": 0.4543,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.04626170615628678,
1588
+ "grad_norm": 0.6883777439066587,
1589
+ "learning_rate": 1.9986283777760598e-06,
1590
+ "loss": 0.4441,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.04646640397113761,
1595
+ "grad_norm": 0.7411624814334564,
1596
+ "learning_rate": 1.9985934415809266e-06,
1597
+ "loss": 0.4902,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.046671101785988434,
1602
+ "grad_norm": 0.7207442928316582,
1603
+ "learning_rate": 1.99855806635162e-06,
1604
+ "loss": 0.4502,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.04687579960083926,
1609
+ "grad_norm": 0.7535800049970842,
1610
+ "learning_rate": 1.9985222521036923e-06,
1611
+ "loss": 0.4588,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.047080497415690085,
1616
+ "grad_norm": 0.755131046087142,
1617
+ "learning_rate": 1.9984859988528896e-06,
1618
+ "loss": 0.478,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.047285195230540915,
1623
+ "grad_norm": 0.7363267944788255,
1624
+ "learning_rate": 1.9984493066151515e-06,
1625
+ "loss": 0.4722,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.04748989304539174,
1630
+ "grad_norm": 0.7175156333070826,
1631
+ "learning_rate": 1.9984121754066084e-06,
1632
+ "loss": 0.4284,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.04769459086024257,
1637
+ "grad_norm": 0.7021868758602576,
1638
+ "learning_rate": 1.9983746052435867e-06,
1639
+ "loss": 0.4549,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.047899288675093396,
1644
+ "grad_norm": 0.7661651319293146,
1645
+ "learning_rate": 1.998336596142603e-06,
1646
+ "loss": 0.4626,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.04810398648994422,
1651
+ "grad_norm": 0.7200117942966474,
1652
+ "learning_rate": 1.9982981481203685e-06,
1653
+ "loss": 0.4602,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.04830868430479505,
1658
+ "grad_norm": 0.7402636115111145,
1659
+ "learning_rate": 1.9982592611937875e-06,
1660
+ "loss": 0.462,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.04851338211964587,
1665
+ "grad_norm": 0.7289521015317652,
1666
+ "learning_rate": 1.998219935379956e-06,
1667
+ "loss": 0.4247,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.0487180799344967,
1672
+ "grad_norm": 0.8254564955090967,
1673
+ "learning_rate": 1.9981801706961637e-06,
1674
+ "loss": 0.445,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.04892277774934753,
1679
+ "grad_norm": 0.711987818470011,
1680
+ "learning_rate": 1.9981399671598938e-06,
1681
+ "loss": 0.4373,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.04912747556419835,
1686
+ "grad_norm": 0.7578069994316992,
1687
+ "learning_rate": 1.9980993247888215e-06,
1688
+ "loss": 0.4397,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.04933217337904918,
1693
+ "grad_norm": 0.7111156315088227,
1694
+ "learning_rate": 1.9980582436008155e-06,
1695
+ "loss": 0.444,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.0495368711939,
1700
+ "grad_norm": 0.6825451116028749,
1701
+ "learning_rate": 1.998016723613937e-06,
1702
+ "loss": 0.4216,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.04974156900875083,
1707
+ "grad_norm": 0.717357311135891,
1708
+ "learning_rate": 1.9979747648464406e-06,
1709
+ "loss": 0.4393,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.049946266823601655,
1714
+ "grad_norm": 0.7431878666336732,
1715
+ "learning_rate": 1.9979323673167735e-06,
1716
+ "loss": 0.4588,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.050150964638452485,
1721
+ "grad_norm": 0.7393037207206594,
1722
+ "learning_rate": 1.997889531043576e-06,
1723
+ "loss": 0.4547,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.050355662453303314,
1728
+ "grad_norm": 0.751624588819876,
1729
+ "learning_rate": 1.997846256045681e-06,
1730
+ "loss": 0.4423,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.050560360268154136,
1735
+ "grad_norm": 0.7291703435937729,
1736
+ "learning_rate": 1.9978025423421143e-06,
1737
+ "loss": 0.4577,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.050765058083004966,
1742
+ "grad_norm": 0.7730058435275767,
1743
+ "learning_rate": 1.9977583899520954e-06,
1744
+ "loss": 0.4725,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.05096975589785579,
1749
+ "grad_norm": 0.7388265631923211,
1750
+ "learning_rate": 1.9977137988950354e-06,
1751
+ "loss": 0.4915,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.05117445371270662,
1756
+ "grad_norm": 0.7253056655402751,
1757
+ "learning_rate": 1.9976687691905393e-06,
1758
+ "loss": 0.4463,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.05137915152755744,
1763
+ "grad_norm": 0.7279513578282504,
1764
+ "learning_rate": 1.997623300858404e-06,
1765
+ "loss": 0.4692,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.05158384934240827,
1770
+ "grad_norm": 0.7758619445867678,
1771
+ "learning_rate": 1.99757739391862e-06,
1772
+ "loss": 0.4359,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.0517885471572591,
1777
+ "grad_norm": 0.6934936677414176,
1778
+ "learning_rate": 1.9975310483913706e-06,
1779
+ "loss": 0.4342,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.05199324497210992,
1784
+ "grad_norm": 0.785492944076531,
1785
+ "learning_rate": 1.9974842642970316e-06,
1786
+ "loss": 0.4762,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.05219794278696075,
1791
+ "grad_norm": 0.693346587621168,
1792
+ "learning_rate": 1.9974370416561716e-06,
1793
+ "loss": 0.4077,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.05240264060181157,
1798
+ "grad_norm": 0.7036807587452536,
1799
+ "learning_rate": 1.9973893804895526e-06,
1800
+ "loss": 0.4559,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.0526073384166624,
1805
+ "grad_norm": 0.6487321250079171,
1806
+ "learning_rate": 1.997341280818128e-06,
1807
+ "loss": 0.4445,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.05281203623151323,
1812
+ "grad_norm": 0.7581793864091325,
1813
+ "learning_rate": 1.9972927426630464e-06,
1814
+ "loss": 0.4189,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.053016734046364054,
1819
+ "grad_norm": 0.7654003299344445,
1820
+ "learning_rate": 1.9972437660456465e-06,
1821
+ "loss": 0.4772,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.053221431861214884,
1826
+ "grad_norm": 0.7482689765950153,
1827
+ "learning_rate": 1.9971943509874614e-06,
1828
+ "loss": 0.4577,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.053426129676065706,
1833
+ "grad_norm": 0.7328225919609754,
1834
+ "learning_rate": 1.997144497510217e-06,
1835
+ "loss": 0.4301,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.053630827490916536,
1840
+ "grad_norm": 0.734577771662883,
1841
+ "learning_rate": 1.9970942056358307e-06,
1842
+ "loss": 0.4721,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.05383552530576736,
1847
+ "grad_norm": 0.7974471697046129,
1848
+ "learning_rate": 1.997043475386414e-06,
1849
+ "loss": 0.4759,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.05404022312061819,
1854
+ "grad_norm": 0.7204102805022299,
1855
+ "learning_rate": 1.99699230678427e-06,
1856
+ "loss": 0.4159,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.05424492093546902,
1861
+ "grad_norm": 0.8012057502786673,
1862
+ "learning_rate": 1.996940699851896e-06,
1863
+ "loss": 0.4784,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.05444961875031984,
1868
+ "grad_norm": 0.7456181199531785,
1869
+ "learning_rate": 1.9968886546119805e-06,
1870
+ "loss": 0.4716,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.05465431656517067,
1875
+ "grad_norm": 0.7582815001255205,
1876
+ "learning_rate": 1.996836171087405e-06,
1877
+ "loss": 0.4561,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.05485901438002149,
1882
+ "grad_norm": 0.7334168776176787,
1883
+ "learning_rate": 1.996783249301245e-06,
1884
+ "loss": 0.4344,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.05506371219487232,
1889
+ "grad_norm": 0.6872926048341936,
1890
+ "learning_rate": 1.9967298892767674e-06,
1891
+ "loss": 0.4293,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.05526841000972314,
1896
+ "grad_norm": 0.7532210670290133,
1897
+ "learning_rate": 1.9966760910374313e-06,
1898
+ "loss": 0.4644,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.05547310782457397,
1903
+ "grad_norm": 0.7306067456669837,
1904
+ "learning_rate": 1.99662185460689e-06,
1905
+ "loss": 0.4618,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.0556778056394248,
1910
+ "grad_norm": 0.7456313505165526,
1911
+ "learning_rate": 1.9965671800089887e-06,
1912
+ "loss": 0.4389,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.055882503454275624,
1917
+ "grad_norm": 0.6963357390921938,
1918
+ "learning_rate": 1.9965120672677646e-06,
1919
+ "loss": 0.4596,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.056087201269126453,
1924
+ "grad_norm": 0.6963762346496246,
1925
+ "learning_rate": 1.9964565164074488e-06,
1926
+ "loss": 0.4452,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.056291899083977276,
1931
+ "grad_norm": 0.7538437049515703,
1932
+ "learning_rate": 1.996400527452464e-06,
1933
+ "loss": 0.442,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.056496596898828105,
1938
+ "grad_norm": 0.7129437285411915,
1939
+ "learning_rate": 1.9963441004274265e-06,
1940
+ "loss": 0.4575,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.056701294713678935,
1945
+ "grad_norm": 0.7500374688918953,
1946
+ "learning_rate": 1.9962872353571436e-06,
1947
+ "loss": 0.4739,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.05690599252852976,
1952
+ "grad_norm": 0.7695931372733311,
1953
+ "learning_rate": 1.996229932266617e-06,
1954
+ "loss": 0.4523,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.05711069034338059,
1959
+ "grad_norm": 0.8047384042314083,
1960
+ "learning_rate": 1.99617219118104e-06,
1961
+ "loss": 0.4541,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.05731538815823141,
1966
+ "grad_norm": 0.7337412326319969,
1967
+ "learning_rate": 1.9961140121257978e-06,
1968
+ "loss": 0.5429,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.05752008597308224,
1973
+ "grad_norm": 0.7647644479794993,
1974
+ "learning_rate": 1.99605539512647e-06,
1975
+ "loss": 0.4479,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.05772478378793306,
1980
+ "grad_norm": 0.7676226046817726,
1981
+ "learning_rate": 1.9959963402088274e-06,
1982
+ "loss": 0.4641,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.05792948160278389,
1987
+ "grad_norm": 0.7235143819897621,
1988
+ "learning_rate": 1.9959368473988333e-06,
1989
+ "loss": 0.4545,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.05813417941763472,
1994
+ "grad_norm": 0.7247778707795571,
1995
+ "learning_rate": 1.9958769167226444e-06,
1996
+ "loss": 0.4527,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.05833887723248554,
2001
+ "grad_norm": 0.7539665158584474,
2002
+ "learning_rate": 1.995816548206609e-06,
2003
+ "loss": 0.4458,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.05854357504733637,
2008
+ "grad_norm": 0.7532087725317325,
2009
+ "learning_rate": 1.995755741877269e-06,
2010
+ "loss": 0.4461,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.058748272862187194,
2015
+ "grad_norm": 0.7797916526020292,
2016
+ "learning_rate": 1.995694497761357e-06,
2017
+ "loss": 0.4665,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.05895297067703802,
2022
+ "grad_norm": 0.7517569918058703,
2023
+ "learning_rate": 1.9956328158857992e-06,
2024
+ "loss": 0.4728,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.059157668491888846,
2029
+ "grad_norm": 0.7570745421432602,
2030
+ "learning_rate": 1.995570696277715e-06,
2031
+ "loss": 0.4563,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.059362366306739675,
2036
+ "grad_norm": 0.740586734451177,
2037
+ "learning_rate": 1.995508138964415e-06,
2038
+ "loss": 0.4709,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.059567064121590504,
2043
+ "grad_norm": 0.7681915361666245,
2044
+ "learning_rate": 1.995445143973403e-06,
2045
+ "loss": 0.4503,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.05977176193644133,
2050
+ "grad_norm": 0.7455448750612553,
2051
+ "learning_rate": 1.9953817113323743e-06,
2052
+ "loss": 0.4529,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.059976459751292156,
2057
+ "grad_norm": 0.7745938996976398,
2058
+ "learning_rate": 1.9953178410692174e-06,
2059
+ "loss": 0.4256,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.06018115756614298,
2064
+ "grad_norm": 0.7431821602019313,
2065
+ "learning_rate": 1.9952535332120137e-06,
2066
+ "loss": 0.4453,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.06038585538099381,
2071
+ "grad_norm": 0.6903595364669262,
2072
+ "learning_rate": 1.9951887877890354e-06,
2073
+ "loss": 0.4339,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.06059055319584464,
2078
+ "grad_norm": 0.773597292773469,
2079
+ "learning_rate": 1.9951236048287483e-06,
2080
+ "loss": 0.4817,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.06079525101069546,
2085
+ "grad_norm": 0.7263693618591641,
2086
+ "learning_rate": 1.9950579843598105e-06,
2087
+ "loss": 0.4572,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.06099994882554629,
2092
+ "grad_norm": 0.7297961413486055,
2093
+ "learning_rate": 1.994991926411072e-06,
2094
+ "loss": 0.4359,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.06120464664039711,
2099
+ "grad_norm": 0.7855052727291876,
2100
+ "learning_rate": 1.9949254310115753e-06,
2101
+ "loss": 0.4568,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.06140934445524794,
2106
+ "grad_norm": 0.7300504368627593,
2107
+ "learning_rate": 1.994858498190556e-06,
2108
+ "loss": 0.4501,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.061614042270098764,
2113
+ "grad_norm": 0.7096161782700376,
2114
+ "learning_rate": 1.99479112797744e-06,
2115
+ "loss": 0.4663,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.06181874008494959,
2120
+ "grad_norm": 0.7018494412530502,
2121
+ "learning_rate": 1.9947233204018477e-06,
2122
+ "loss": 0.4401,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.06202343789980042,
2127
+ "grad_norm": 0.7907086687325865,
2128
+ "learning_rate": 1.9946550754935906e-06,
2129
+ "loss": 0.4394,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.062228135714651245,
2134
+ "grad_norm": 0.7637305795975494,
2135
+ "learning_rate": 1.9945863932826727e-06,
2136
+ "loss": 0.4368,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.062432833529502074,
2141
+ "grad_norm": 0.7745057196668337,
2142
+ "learning_rate": 1.9945172737992904e-06,
2143
+ "loss": 0.4926,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.0626375313443529,
2148
+ "grad_norm": 0.7367608831304401,
2149
+ "learning_rate": 1.994447717073832e-06,
2150
+ "loss": 0.4688,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.06284222915920372,
2155
+ "grad_norm": 0.7695856962055981,
2156
+ "learning_rate": 1.9943777231368794e-06,
2157
+ "loss": 0.4484,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.06304692697405455,
2162
+ "grad_norm": 0.7187776209986876,
2163
+ "learning_rate": 1.994307292019204e-06,
2164
+ "loss": 0.4444,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.06325162478890538,
2169
+ "grad_norm": 0.7347949665208309,
2170
+ "learning_rate": 1.994236423751772e-06,
2171
+ "loss": 0.4485,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.06345632260375621,
2176
+ "grad_norm": 0.7105615411584904,
2177
+ "learning_rate": 1.99416511836574e-06,
2178
+ "loss": 0.4115,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.06366102041860704,
2183
+ "grad_norm": 0.7092446318381356,
2184
+ "learning_rate": 1.994093375892459e-06,
2185
+ "loss": 0.4398,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.06386571823345785,
2190
+ "grad_norm": 0.770807237418002,
2191
+ "learning_rate": 1.9940211963634696e-06,
2192
+ "loss": 0.4413,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.06407041604830868,
2197
+ "grad_norm": 0.7396584102001305,
2198
+ "learning_rate": 1.9939485798105057e-06,
2199
+ "loss": 0.4851,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.06427511386315951,
2204
+ "grad_norm": 0.7444518429400907,
2205
+ "learning_rate": 1.9938755262654945e-06,
2206
+ "loss": 0.4337,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.06447981167801034,
2211
+ "grad_norm": 0.722720227886292,
2212
+ "learning_rate": 1.9938020357605527e-06,
2213
+ "loss": 0.4965,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.06468450949286117,
2218
+ "grad_norm": 0.7666649202795676,
2219
+ "learning_rate": 1.993728108327992e-06,
2220
+ "loss": 0.4532,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.06488920730771199,
2225
+ "grad_norm": 0.7549308832804502,
2226
+ "learning_rate": 1.9936537440003134e-06,
2227
+ "loss": 0.4582,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.06509390512256281,
2232
+ "grad_norm": 0.6872546619483418,
2233
+ "learning_rate": 1.993578942810212e-06,
2234
+ "loss": 0.4695,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.06529860293741364,
2239
+ "grad_norm": 0.7550879312423509,
2240
+ "learning_rate": 1.9935037047905748e-06,
2241
+ "loss": 0.4833,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.06550330075226447,
2246
+ "grad_norm": 0.7064631296777315,
2247
+ "learning_rate": 1.99342802997448e-06,
2248
+ "loss": 0.4724,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.0657079985671153,
2253
+ "grad_norm": 0.7041398494235039,
2254
+ "learning_rate": 1.9933519183951977e-06,
2255
+ "loss": 0.4441,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.06591269638196612,
2260
+ "grad_norm": 0.7624056534749137,
2261
+ "learning_rate": 1.9932753700861914e-06,
2262
+ "loss": 0.465,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.06611739419681695,
2267
+ "grad_norm": 0.7553645719854849,
2268
+ "learning_rate": 1.9931983850811155e-06,
2269
+ "loss": 0.4241,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.06632209201166778,
2274
+ "grad_norm": 0.7617302308064162,
2275
+ "learning_rate": 1.9931209634138158e-06,
2276
+ "loss": 0.4475,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.0665267898265186,
2281
+ "grad_norm": 0.7484410349937703,
2282
+ "learning_rate": 1.9930431051183324e-06,
2283
+ "loss": 0.432,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.06673148764136942,
2288
+ "grad_norm": 0.7283423040518047,
2289
+ "learning_rate": 1.9929648102288953e-06,
2290
+ "loss": 0.4388,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.06693618545622025,
2295
+ "grad_norm": 0.7852619772614368,
2296
+ "learning_rate": 1.9928860787799265e-06,
2297
+ "loss": 0.468,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.06714088327107108,
2302
+ "grad_norm": 0.7769054079891817,
2303
+ "learning_rate": 1.992806910806041e-06,
2304
+ "loss": 0.4579,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.06734558108592191,
2309
+ "grad_norm": 0.7619008198687942,
2310
+ "learning_rate": 1.992727306342045e-06,
2311
+ "loss": 0.4789,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.06755027890077274,
2316
+ "grad_norm": 0.7607061858221339,
2317
+ "learning_rate": 1.9926472654229376e-06,
2318
+ "loss": 0.4241,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.06775497671562355,
2323
+ "grad_norm": 0.7236097758888326,
2324
+ "learning_rate": 1.992566788083908e-06,
2325
+ "loss": 0.4181,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.06795967453047438,
2330
+ "grad_norm": 0.8114241422692142,
2331
+ "learning_rate": 1.992485874360338e-06,
2332
+ "loss": 0.4383,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.06816437234532521,
2337
+ "grad_norm": 0.7429107582072085,
2338
+ "learning_rate": 1.992404524287803e-06,
2339
+ "loss": 0.4418,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.06836907016017604,
2344
+ "grad_norm": 0.7664592844718724,
2345
+ "learning_rate": 1.9923227379020674e-06,
2346
+ "loss": 0.4424,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.06857376797502687,
2351
+ "grad_norm": 0.7525421136101852,
2352
+ "learning_rate": 1.9922405152390893e-06,
2353
+ "loss": 0.4601,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.06877846578987769,
2358
+ "grad_norm": 0.7924977816871237,
2359
+ "learning_rate": 1.9921578563350182e-06,
2360
+ "loss": 0.4481,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.06898316360472852,
2365
+ "grad_norm": 0.7205455607720451,
2366
+ "learning_rate": 1.9920747612261953e-06,
2367
+ "loss": 0.472,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.06918786141957935,
2372
+ "grad_norm": 0.8099842191878124,
2373
+ "learning_rate": 1.9919912299491534e-06,
2374
+ "loss": 0.4522,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.06939255923443018,
2379
+ "grad_norm": 0.7601204829884295,
2380
+ "learning_rate": 1.991907262540617e-06,
2381
+ "loss": 0.4361,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.069597257049281,
2386
+ "grad_norm": 0.7498165219729875,
2387
+ "learning_rate": 1.9918228590375034e-06,
2388
+ "loss": 0.4363,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.06980195486413182,
2393
+ "grad_norm": 0.7130352034738562,
2394
+ "learning_rate": 1.9917380194769197e-06,
2395
+ "loss": 0.4355,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.07000665267898265,
2400
+ "grad_norm": 0.7653650161746682,
2401
+ "learning_rate": 1.991652743896167e-06,
2402
+ "loss": 0.4062,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.07021135049383348,
2407
+ "grad_norm": 0.8196206368298663,
2408
+ "learning_rate": 1.991567032332736e-06,
2409
+ "loss": 0.4614,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.07041604830868431,
2414
+ "grad_norm": 0.7812062890731587,
2415
+ "learning_rate": 1.991480884824311e-06,
2416
+ "loss": 0.4975,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.07062074612353512,
2421
+ "grad_norm": 0.7206276352235353,
2422
+ "learning_rate": 1.9913943014087655e-06,
2423
+ "loss": 0.4157,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.07082544393838595,
2428
+ "grad_norm": 0.78698897087266,
2429
+ "learning_rate": 1.9913072821241672e-06,
2430
+ "loss": 0.4581,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.07103014175323678,
2435
+ "grad_norm": 0.7764210083677198,
2436
+ "learning_rate": 1.991219827008775e-06,
2437
+ "loss": 0.4408,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.07123483956808761,
2442
+ "grad_norm": 0.7595433195005857,
2443
+ "learning_rate": 1.9911319361010367e-06,
2444
+ "loss": 0.4492,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.07143953738293844,
2449
+ "grad_norm": 0.722334537399672,
2450
+ "learning_rate": 1.991043609439596e-06,
2451
+ "loss": 0.4098,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.07164423519778926,
2456
+ "grad_norm": 0.7424362807959037,
2457
+ "learning_rate": 1.9909548470632842e-06,
2458
+ "loss": 0.4169,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.07184893301264009,
2463
+ "grad_norm": 0.7665542829825039,
2464
+ "learning_rate": 1.9908656490111267e-06,
2465
+ "loss": 0.4635,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.07205363082749092,
2470
+ "grad_norm": 0.7670493050777013,
2471
+ "learning_rate": 1.9907760153223396e-06,
2472
+ "loss": 0.4245,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.07225832864234175,
2477
+ "grad_norm": 0.7082306081348982,
2478
+ "learning_rate": 1.9906859460363304e-06,
2479
+ "loss": 0.3885,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.07246302645719258,
2484
+ "grad_norm": 0.7179046673862461,
2485
+ "learning_rate": 1.990595441192699e-06,
2486
+ "loss": 0.4047,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.07266772427204339,
2491
+ "grad_norm": 0.7785673633417279,
2492
+ "learning_rate": 1.990504500831235e-06,
2493
+ "loss": 0.484,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.07287242208689422,
2498
+ "grad_norm": 0.7657292926077239,
2499
+ "learning_rate": 1.9904131249919215e-06,
2500
+ "loss": 0.4444,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.07307711990174505,
2505
+ "grad_norm": 0.7569753573050043,
2506
+ "learning_rate": 1.9903213137149313e-06,
2507
+ "loss": 0.4701,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.07328181771659588,
2512
+ "grad_norm": 0.8072244283837906,
2513
+ "learning_rate": 1.99022906704063e-06,
2514
+ "loss": 0.4409,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.07348651553144671,
2519
+ "grad_norm": 0.7629374834771911,
2520
+ "learning_rate": 1.990136385009574e-06,
2521
+ "loss": 0.4927,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.07369121334629752,
2526
+ "grad_norm": 0.7385249798311992,
2527
+ "learning_rate": 1.990043267662511e-06,
2528
+ "loss": 0.4338,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.07389591116114835,
2533
+ "grad_norm": 0.775227359922002,
2534
+ "learning_rate": 1.989949715040381e-06,
2535
+ "loss": 0.4789,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.07410060897599918,
2540
+ "grad_norm": 0.7517526442766227,
2541
+ "learning_rate": 1.9898557271843133e-06,
2542
+ "loss": 0.4504,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.07430530679085001,
2547
+ "grad_norm": 0.7375927174293256,
2548
+ "learning_rate": 1.9897613041356314e-06,
2549
+ "loss": 0.4108,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.07451000460570083,
2554
+ "grad_norm": 0.72174871971371,
2555
+ "learning_rate": 1.9896664459358472e-06,
2556
+ "loss": 0.4475,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.07471470242055166,
2561
+ "grad_norm": 0.7329776456768429,
2562
+ "learning_rate": 1.9895711526266667e-06,
2563
+ "loss": 0.424,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.07491940023540249,
2568
+ "grad_norm": 0.7185696661034995,
2569
+ "learning_rate": 1.9894754242499852e-06,
2570
+ "loss": 0.4543,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.07512409805025332,
2575
+ "grad_norm": 0.7049184644044292,
2576
+ "learning_rate": 1.98937926084789e-06,
2577
+ "loss": 0.42,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.07532879586510415,
2582
+ "grad_norm": 0.7293724081932391,
2583
+ "learning_rate": 1.989282662462659e-06,
2584
+ "loss": 0.43,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.07553349367995496,
2589
+ "grad_norm": 0.7059632003848231,
2590
+ "learning_rate": 1.9891856291367626e-06,
2591
+ "loss": 0.4275,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.07573819149480579,
2596
+ "grad_norm": 0.7683789138077434,
2597
+ "learning_rate": 1.9890881609128618e-06,
2598
+ "loss": 0.4408,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.07594288930965662,
2603
+ "grad_norm": 0.7872951646579199,
2604
+ "learning_rate": 1.9889902578338087e-06,
2605
+ "loss": 0.4292,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.07614758712450745,
2610
+ "grad_norm": 0.7924075912782186,
2611
+ "learning_rate": 1.988891919942646e-06,
2612
+ "loss": 0.4408,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.07635228493935828,
2617
+ "grad_norm": 0.7607074410846072,
2618
+ "learning_rate": 1.9887931472826093e-06,
2619
+ "loss": 0.4485,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.0765569827542091,
2624
+ "grad_norm": 0.7592064137840062,
2625
+ "learning_rate": 1.9886939398971238e-06,
2626
+ "loss": 0.4404,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.07676168056905992,
2631
+ "grad_norm": 0.8183614522835663,
2632
+ "learning_rate": 1.9885942978298054e-06,
2633
+ "loss": 0.4677,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.07696637838391075,
2638
+ "grad_norm": 0.7400985748589023,
2639
+ "learning_rate": 1.9884942211244637e-06,
2640
+ "loss": 0.4867,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.07717107619876158,
2645
+ "grad_norm": 0.7657568826393069,
2646
+ "learning_rate": 1.988393709825096e-06,
2647
+ "loss": 0.4592,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.07737577401361241,
2652
+ "grad_norm": 0.7242932934680155,
2653
+ "learning_rate": 1.988292763975893e-06,
2654
+ "loss": 0.4037,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.07758047182846323,
2659
+ "grad_norm": 0.695616397865644,
2660
+ "learning_rate": 1.9881913836212365e-06,
2661
+ "loss": 0.4534,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.07778516964331406,
2666
+ "grad_norm": 0.7286084983103666,
2667
+ "learning_rate": 1.9880895688056977e-06,
2668
+ "loss": 0.4267,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.07798986745816489,
2673
+ "grad_norm": 0.7434704183939207,
2674
+ "learning_rate": 1.98798731957404e-06,
2675
+ "loss": 0.4308,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.07819456527301571,
2680
+ "grad_norm": 0.7803766550265465,
2681
+ "learning_rate": 1.9878846359712176e-06,
2682
+ "loss": 0.4455,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.07839926308786653,
2687
+ "grad_norm": 0.777748381274515,
2688
+ "learning_rate": 1.9877815180423757e-06,
2689
+ "loss": 0.4639,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.07860396090271736,
2694
+ "grad_norm": 0.724760659067026,
2695
+ "learning_rate": 1.9876779658328503e-06,
2696
+ "loss": 0.4666,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.07880865871756819,
2701
+ "grad_norm": 0.6620651646162441,
2702
+ "learning_rate": 1.9875739793881685e-06,
2703
+ "loss": 0.4195,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.07901335653241902,
2708
+ "grad_norm": 0.7524415209772658,
2709
+ "learning_rate": 1.9874695587540477e-06,
2710
+ "loss": 0.4431,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.07921805434726985,
2715
+ "grad_norm": 0.6797630439484897,
2716
+ "learning_rate": 1.9873647039763975e-06,
2717
+ "loss": 0.4453,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.07942275216212066,
2722
+ "grad_norm": 0.7685812672797145,
2723
+ "learning_rate": 1.987259415101317e-06,
2724
+ "loss": 0.4623,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.07962744997697149,
2729
+ "grad_norm": 0.7581895406953137,
2730
+ "learning_rate": 1.9871536921750965e-06,
2731
+ "loss": 0.4423,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.07983214779182232,
2736
+ "grad_norm": 0.7100776210964536,
2737
+ "learning_rate": 1.987047535244218e-06,
2738
+ "loss": 0.4171,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.08003684560667315,
2743
+ "grad_norm": 0.7299757652818287,
2744
+ "learning_rate": 1.9869409443553535e-06,
2745
+ "loss": 0.454,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.08024154342152398,
2750
+ "grad_norm": 0.7439290629641574,
2751
+ "learning_rate": 1.9868339195553657e-06,
2752
+ "loss": 0.4426,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.0804462412363748,
2757
+ "grad_norm": 0.75716235792549,
2758
+ "learning_rate": 1.9867264608913084e-06,
2759
+ "loss": 0.4479,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.08065093905122563,
2764
+ "grad_norm": 0.6968938261452492,
2765
+ "learning_rate": 1.9866185684104266e-06,
2766
+ "loss": 0.4335,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.08085563686607646,
2771
+ "grad_norm": 0.7170546940871543,
2772
+ "learning_rate": 1.9865102421601545e-06,
2773
+ "loss": 0.4286,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.08106033468092728,
2778
+ "grad_norm": 0.7478223773320385,
2779
+ "learning_rate": 1.986401482188119e-06,
2780
+ "loss": 0.4202,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.08126503249577811,
2785
+ "grad_norm": 0.7076328746009948,
2786
+ "learning_rate": 1.986292288542136e-06,
2787
+ "loss": 0.4558,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.08146973031062893,
2792
+ "grad_norm": 0.7591423650217918,
2793
+ "learning_rate": 1.986182661270213e-06,
2794
+ "loss": 0.4674,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.08167442812547976,
2799
+ "grad_norm": 0.7416281412961139,
2800
+ "learning_rate": 1.9860726004205485e-06,
2801
+ "loss": 0.4397,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.08187912594033059,
2806
+ "grad_norm": 0.7416913042041706,
2807
+ "learning_rate": 1.98596210604153e-06,
2808
+ "loss": 0.4405,
2809
+ "step": 400
2810
+ }
2811
+ ],
2812
+ "logging_steps": 1,
2813
+ "max_steps": 4885,
2814
+ "num_input_tokens_seen": 0,
2815
+ "num_train_epochs": 1,
2816
+ "save_steps": 200,
2817
+ "stateful_callbacks": {
2818
+ "TrainerControl": {
2819
+ "args": {
2820
+ "should_epoch_stop": false,
2821
+ "should_evaluate": false,
2822
+ "should_log": false,
2823
+ "should_save": true,
2824
+ "should_training_stop": false
2825
+ },
2826
+ "attributes": {}
2827
+ }
2828
+ },
2829
+ "total_flos": 53820235284480.0,
2830
+ "train_batch_size": 4,
2831
+ "trial_name": null,
2832
+ "trial_params": null
2833
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:815876fc464af9a5a26a6d1249337452b56c98d7de76faead50ef8193dd9ce4f
3
+ size 7288
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)