JulietLJY
commited on
Commit
·
a6de97b
1
Parent(s):
21d1c70
commit
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +29 -0
- generation_config.json +14 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- trainer_state.json +2833 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/nas-alinlp/ljy/models/Qwen2.5-Coder-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.46.1"
|
14 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step400
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:004837c939afeae91abce8eecdb564fc0838c03e08a5f1de44b3f9b489e2c578
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea1a72d13f78be9a52f3fedaec45aeb3d97398e6712f63fd7667c790cf72ed27
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3092ce196184e05d62c85634517eb714fedfc467c0b56fe2017c3bd9d277ed56
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bb178f89265f1b7867b56914cc714d05e29583a2972a9394e5529962bc8bcdc
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
|
3 |
+
size 15024
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ae391aef85b7ae8d361e1d8c0e25981b5c0ba9226651ffdcd3a6332615f467b
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 32768,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2833 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.08187912594033059,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.00020469781485082646,
|
13 |
+
"grad_norm": 1.694807571622714,
|
14 |
+
"learning_rate": 1.3605442176870747e-08,
|
15 |
+
"loss": 0.6346,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0004093956297016529,
|
20 |
+
"grad_norm": 1.7333604659657242,
|
21 |
+
"learning_rate": 2.7210884353741493e-08,
|
22 |
+
"loss": 0.5956,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0006140934445524794,
|
27 |
+
"grad_norm": 1.675170156463719,
|
28 |
+
"learning_rate": 4.081632653061224e-08,
|
29 |
+
"loss": 0.6494,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0008187912594033058,
|
34 |
+
"grad_norm": 1.4535412459526658,
|
35 |
+
"learning_rate": 5.442176870748299e-08,
|
36 |
+
"loss": 0.6097,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0010234890742541324,
|
41 |
+
"grad_norm": 1.6204240919715567,
|
42 |
+
"learning_rate": 6.802721088435375e-08,
|
43 |
+
"loss": 0.6259,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0012281868891049587,
|
48 |
+
"grad_norm": 1.6382909584778356,
|
49 |
+
"learning_rate": 8.163265306122448e-08,
|
50 |
+
"loss": 0.6049,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0014328847039557853,
|
55 |
+
"grad_norm": 1.6591863389965569,
|
56 |
+
"learning_rate": 9.523809523809523e-08,
|
57 |
+
"loss": 0.6093,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.0016375825188066117,
|
62 |
+
"grad_norm": 1.529188807208944,
|
63 |
+
"learning_rate": 1.0884353741496597e-07,
|
64 |
+
"loss": 0.625,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0018422803336574382,
|
69 |
+
"grad_norm": 1.7414059653199376,
|
70 |
+
"learning_rate": 1.2244897959183673e-07,
|
71 |
+
"loss": 0.6148,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.002046978148508265,
|
76 |
+
"grad_norm": 1.6622320550472127,
|
77 |
+
"learning_rate": 1.360544217687075e-07,
|
78 |
+
"loss": 0.5797,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.002251675963359091,
|
83 |
+
"grad_norm": 1.6508189144245708,
|
84 |
+
"learning_rate": 1.4965986394557823e-07,
|
85 |
+
"loss": 0.6484,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.0024563737782099175,
|
90 |
+
"grad_norm": 1.7202133207821506,
|
91 |
+
"learning_rate": 1.6326530612244896e-07,
|
92 |
+
"loss": 0.6216,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0026610715930607443,
|
97 |
+
"grad_norm": 1.5235060143030161,
|
98 |
+
"learning_rate": 1.7687074829931972e-07,
|
99 |
+
"loss": 0.6452,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.0028657694079115706,
|
104 |
+
"grad_norm": 1.5363560852946705,
|
105 |
+
"learning_rate": 1.9047619047619045e-07,
|
106 |
+
"loss": 0.6405,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.003070467222762397,
|
111 |
+
"grad_norm": 1.6730999257251689,
|
112 |
+
"learning_rate": 2.0408163265306121e-07,
|
113 |
+
"loss": 0.6497,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.0032751650376132233,
|
118 |
+
"grad_norm": 1.5758327138243107,
|
119 |
+
"learning_rate": 2.1768707482993195e-07,
|
120 |
+
"loss": 0.6336,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.00347986285246405,
|
125 |
+
"grad_norm": 1.5492535238923828,
|
126 |
+
"learning_rate": 2.312925170068027e-07,
|
127 |
+
"loss": 0.6037,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.0036845606673148765,
|
132 |
+
"grad_norm": 1.6696926699572276,
|
133 |
+
"learning_rate": 2.4489795918367347e-07,
|
134 |
+
"loss": 0.6139,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.003889258482165703,
|
139 |
+
"grad_norm": 1.6544769292475,
|
140 |
+
"learning_rate": 2.5850340136054423e-07,
|
141 |
+
"loss": 0.6315,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.00409395629701653,
|
146 |
+
"grad_norm": 1.6860896587110352,
|
147 |
+
"learning_rate": 2.72108843537415e-07,
|
148 |
+
"loss": 0.6324,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0042986541118673555,
|
153 |
+
"grad_norm": 1.5451565683271684,
|
154 |
+
"learning_rate": 2.857142857142857e-07,
|
155 |
+
"loss": 0.6227,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.004503351926718182,
|
160 |
+
"grad_norm": 1.5658617650258626,
|
161 |
+
"learning_rate": 2.9931972789115645e-07,
|
162 |
+
"loss": 0.5873,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.004708049741569009,
|
167 |
+
"grad_norm": 1.6014268573351107,
|
168 |
+
"learning_rate": 3.129251700680272e-07,
|
169 |
+
"loss": 0.6066,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.004912747556419835,
|
174 |
+
"grad_norm": 1.560124972985785,
|
175 |
+
"learning_rate": 3.265306122448979e-07,
|
176 |
+
"loss": 0.6062,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.005117445371270662,
|
181 |
+
"grad_norm": 1.6662191020723245,
|
182 |
+
"learning_rate": 3.401360544217687e-07,
|
183 |
+
"loss": 0.5968,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.0053221431861214885,
|
188 |
+
"grad_norm": 1.7137595321931511,
|
189 |
+
"learning_rate": 3.5374149659863944e-07,
|
190 |
+
"loss": 0.6325,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.0055268410009723145,
|
195 |
+
"grad_norm": 1.570188696390546,
|
196 |
+
"learning_rate": 3.673469387755102e-07,
|
197 |
+
"loss": 0.6375,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.005731538815823141,
|
202 |
+
"grad_norm": 1.5585726347237283,
|
203 |
+
"learning_rate": 3.809523809523809e-07,
|
204 |
+
"loss": 0.6216,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.005936236630673967,
|
209 |
+
"grad_norm": 1.4585947364133294,
|
210 |
+
"learning_rate": 3.9455782312925167e-07,
|
211 |
+
"loss": 0.5975,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.006140934445524794,
|
216 |
+
"grad_norm": 1.5313204391085877,
|
217 |
+
"learning_rate": 4.0816326530612243e-07,
|
218 |
+
"loss": 0.6461,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.006345632260375621,
|
223 |
+
"grad_norm": 1.4690318982818216,
|
224 |
+
"learning_rate": 4.217687074829932e-07,
|
225 |
+
"loss": 0.6054,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.006550330075226447,
|
230 |
+
"grad_norm": 1.5256726957060316,
|
231 |
+
"learning_rate": 4.353741496598639e-07,
|
232 |
+
"loss": 0.6507,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.006755027890077273,
|
237 |
+
"grad_norm": 1.541131533646238,
|
238 |
+
"learning_rate": 4.4897959183673465e-07,
|
239 |
+
"loss": 0.6185,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.0069597257049281,
|
244 |
+
"grad_norm": 1.5233070330699345,
|
245 |
+
"learning_rate": 4.625850340136054e-07,
|
246 |
+
"loss": 0.6541,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.007164423519778926,
|
251 |
+
"grad_norm": 1.4300240195672376,
|
252 |
+
"learning_rate": 4.761904761904761e-07,
|
253 |
+
"loss": 0.6156,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.007369121334629753,
|
258 |
+
"grad_norm": 1.3386118655838508,
|
259 |
+
"learning_rate": 4.897959183673469e-07,
|
260 |
+
"loss": 0.5943,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.00757381914948058,
|
265 |
+
"grad_norm": 1.3270928639031936,
|
266 |
+
"learning_rate": 5.034013605442177e-07,
|
267 |
+
"loss": 0.6139,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.007778516964331406,
|
272 |
+
"grad_norm": 1.3116129547815811,
|
273 |
+
"learning_rate": 5.170068027210885e-07,
|
274 |
+
"loss": 0.6119,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.007983214779182232,
|
279 |
+
"grad_norm": 1.2451803048665653,
|
280 |
+
"learning_rate": 5.306122448979592e-07,
|
281 |
+
"loss": 0.5463,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.00818791259403306,
|
286 |
+
"grad_norm": 1.2351915311334578,
|
287 |
+
"learning_rate": 5.4421768707483e-07,
|
288 |
+
"loss": 0.5762,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.008392610408883885,
|
293 |
+
"grad_norm": 1.3425104949855924,
|
294 |
+
"learning_rate": 5.578231292517006e-07,
|
295 |
+
"loss": 0.5866,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.008597308223734711,
|
300 |
+
"grad_norm": 1.3464358053560985,
|
301 |
+
"learning_rate": 5.714285714285714e-07,
|
302 |
+
"loss": 0.6134,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.008802006038585539,
|
307 |
+
"grad_norm": 1.3225968492677225,
|
308 |
+
"learning_rate": 5.850340136054421e-07,
|
309 |
+
"loss": 0.6034,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.009006703853436365,
|
314 |
+
"grad_norm": 1.2483346937333237,
|
315 |
+
"learning_rate": 5.986394557823129e-07,
|
316 |
+
"loss": 0.5495,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.00921140166828719,
|
321 |
+
"grad_norm": 1.1648688787665145,
|
322 |
+
"learning_rate": 6.122448979591837e-07,
|
323 |
+
"loss": 0.616,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.009416099483138018,
|
328 |
+
"grad_norm": 1.2616996144445687,
|
329 |
+
"learning_rate": 6.258503401360544e-07,
|
330 |
+
"loss": 0.57,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.009620797297988844,
|
335 |
+
"grad_norm": 1.3108653064941627,
|
336 |
+
"learning_rate": 6.394557823129252e-07,
|
337 |
+
"loss": 0.5814,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.00982549511283967,
|
342 |
+
"grad_norm": 1.1754918916726766,
|
343 |
+
"learning_rate": 6.530612244897958e-07,
|
344 |
+
"loss": 0.5754,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.010030192927690498,
|
349 |
+
"grad_norm": 1.272022559229399,
|
350 |
+
"learning_rate": 6.666666666666666e-07,
|
351 |
+
"loss": 0.5944,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.010234890742541324,
|
356 |
+
"grad_norm": 1.13107848406085,
|
357 |
+
"learning_rate": 6.802721088435374e-07,
|
358 |
+
"loss": 0.5945,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.01043958855739215,
|
363 |
+
"grad_norm": 1.1273813534766033,
|
364 |
+
"learning_rate": 6.938775510204081e-07,
|
365 |
+
"loss": 0.5538,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.010644286372242977,
|
370 |
+
"grad_norm": 1.1293664677810216,
|
371 |
+
"learning_rate": 7.074829931972789e-07,
|
372 |
+
"loss": 0.5854,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.010848984187093803,
|
377 |
+
"grad_norm": 0.9728651370750258,
|
378 |
+
"learning_rate": 7.210884353741496e-07,
|
379 |
+
"loss": 0.5108,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.011053682001944629,
|
384 |
+
"grad_norm": 1.0432420839745669,
|
385 |
+
"learning_rate": 7.346938775510204e-07,
|
386 |
+
"loss": 0.5346,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.011258379816795457,
|
391 |
+
"grad_norm": 1.0023551080535893,
|
392 |
+
"learning_rate": 7.482993197278912e-07,
|
393 |
+
"loss": 0.5799,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.011463077631646282,
|
398 |
+
"grad_norm": 0.9638908320867696,
|
399 |
+
"learning_rate": 7.619047619047618e-07,
|
400 |
+
"loss": 0.555,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.011667775446497108,
|
405 |
+
"grad_norm": 1.0398584356633989,
|
406 |
+
"learning_rate": 7.755102040816326e-07,
|
407 |
+
"loss": 0.5147,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.011872473261347934,
|
412 |
+
"grad_norm": 0.9629896909635629,
|
413 |
+
"learning_rate": 7.891156462585033e-07,
|
414 |
+
"loss": 0.5413,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.012077171076198762,
|
419 |
+
"grad_norm": 0.9770292637339174,
|
420 |
+
"learning_rate": 8.027210884353741e-07,
|
421 |
+
"loss": 0.5205,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.012281868891049588,
|
426 |
+
"grad_norm": 0.971945782703798,
|
427 |
+
"learning_rate": 8.163265306122449e-07,
|
428 |
+
"loss": 0.5422,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.012486566705900414,
|
433 |
+
"grad_norm": 0.950398975311517,
|
434 |
+
"learning_rate": 8.299319727891156e-07,
|
435 |
+
"loss": 0.5071,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.012691264520751241,
|
440 |
+
"grad_norm": 0.9049285150490526,
|
441 |
+
"learning_rate": 8.435374149659864e-07,
|
442 |
+
"loss": 0.4964,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.012895962335602067,
|
447 |
+
"grad_norm": 0.8793095995125478,
|
448 |
+
"learning_rate": 8.57142857142857e-07,
|
449 |
+
"loss": 0.5331,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.013100660150452893,
|
454 |
+
"grad_norm": 0.8515461613654705,
|
455 |
+
"learning_rate": 8.707482993197278e-07,
|
456 |
+
"loss": 0.5283,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.013305357965303721,
|
461 |
+
"grad_norm": 0.867859420385022,
|
462 |
+
"learning_rate": 8.843537414965985e-07,
|
463 |
+
"loss": 0.5164,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.013510055780154547,
|
468 |
+
"grad_norm": 0.8786706131313361,
|
469 |
+
"learning_rate": 8.979591836734693e-07,
|
470 |
+
"loss": 0.5645,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.013714753595005373,
|
475 |
+
"grad_norm": 0.8579092596142676,
|
476 |
+
"learning_rate": 9.115646258503401e-07,
|
477 |
+
"loss": 0.5399,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.0139194514098562,
|
482 |
+
"grad_norm": 0.8773908463960428,
|
483 |
+
"learning_rate": 9.251700680272108e-07,
|
484 |
+
"loss": 0.5229,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.014124149224707026,
|
489 |
+
"grad_norm": 0.8528366708567172,
|
490 |
+
"learning_rate": 9.387755102040816e-07,
|
491 |
+
"loss": 0.5349,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.014328847039557852,
|
496 |
+
"grad_norm": 0.9184139371914097,
|
497 |
+
"learning_rate": 9.523809523809522e-07,
|
498 |
+
"loss": 0.5331,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.01453354485440868,
|
503 |
+
"grad_norm": 0.8507461371837629,
|
504 |
+
"learning_rate": 9.65986394557823e-07,
|
505 |
+
"loss": 0.4801,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.014738242669259506,
|
510 |
+
"grad_norm": 0.8374936253263676,
|
511 |
+
"learning_rate": 9.795918367346939e-07,
|
512 |
+
"loss": 0.4931,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.014942940484110332,
|
517 |
+
"grad_norm": 0.8174848059151317,
|
518 |
+
"learning_rate": 9.931972789115645e-07,
|
519 |
+
"loss": 0.5248,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.01514763829896116,
|
524 |
+
"grad_norm": 0.8174077531772923,
|
525 |
+
"learning_rate": 1.0068027210884354e-06,
|
526 |
+
"loss": 0.5036,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.015352336113811985,
|
531 |
+
"grad_norm": 0.7262562022534738,
|
532 |
+
"learning_rate": 1.020408163265306e-06,
|
533 |
+
"loss": 0.5232,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.015557033928662811,
|
538 |
+
"grad_norm": 0.7855250505927771,
|
539 |
+
"learning_rate": 1.034013605442177e-06,
|
540 |
+
"loss": 0.5098,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.015761731743513637,
|
545 |
+
"grad_norm": 0.8278680336215173,
|
546 |
+
"learning_rate": 1.0476190476190476e-06,
|
547 |
+
"loss": 0.4829,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.015966429558364463,
|
552 |
+
"grad_norm": 0.797196328457245,
|
553 |
+
"learning_rate": 1.0612244897959184e-06,
|
554 |
+
"loss": 0.5037,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.016171127373215292,
|
559 |
+
"grad_norm": 0.7507210642711485,
|
560 |
+
"learning_rate": 1.074829931972789e-06,
|
561 |
+
"loss": 0.4944,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.01637582518806612,
|
566 |
+
"grad_norm": 0.826047544790976,
|
567 |
+
"learning_rate": 1.08843537414966e-06,
|
568 |
+
"loss": 0.5179,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.016580523002916944,
|
573 |
+
"grad_norm": 0.7746315656318813,
|
574 |
+
"learning_rate": 1.1020408163265304e-06,
|
575 |
+
"loss": 0.5223,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.01678522081776777,
|
580 |
+
"grad_norm": 0.778762710130468,
|
581 |
+
"learning_rate": 1.1156462585034013e-06,
|
582 |
+
"loss": 0.4845,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.016989918632618596,
|
587 |
+
"grad_norm": 0.749908717861716,
|
588 |
+
"learning_rate": 1.129251700680272e-06,
|
589 |
+
"loss": 0.5175,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.017194616447469422,
|
594 |
+
"grad_norm": 0.7582554704845739,
|
595 |
+
"learning_rate": 1.1428571428571428e-06,
|
596 |
+
"loss": 0.4978,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.01739931426232025,
|
601 |
+
"grad_norm": 0.7595367961287336,
|
602 |
+
"learning_rate": 1.1564625850340134e-06,
|
603 |
+
"loss": 0.4966,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.017604012077171077,
|
608 |
+
"grad_norm": 0.7488555001974914,
|
609 |
+
"learning_rate": 1.1700680272108843e-06,
|
610 |
+
"loss": 0.5025,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.017808709892021903,
|
615 |
+
"grad_norm": 0.8307772703305798,
|
616 |
+
"learning_rate": 1.183673469387755e-06,
|
617 |
+
"loss": 0.5144,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.01801340770687273,
|
622 |
+
"grad_norm": 0.7317615547098743,
|
623 |
+
"learning_rate": 1.1972789115646258e-06,
|
624 |
+
"loss": 0.4817,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.018218105521723555,
|
629 |
+
"grad_norm": 0.8210594860542216,
|
630 |
+
"learning_rate": 1.2108843537414965e-06,
|
631 |
+
"loss": 0.5058,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.01842280333657438,
|
636 |
+
"grad_norm": 0.7250535412206353,
|
637 |
+
"learning_rate": 1.2244897959183673e-06,
|
638 |
+
"loss": 0.4796,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.018627501151425207,
|
643 |
+
"grad_norm": 0.7476633557284366,
|
644 |
+
"learning_rate": 1.238095238095238e-06,
|
645 |
+
"loss": 0.4732,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.018832198966276036,
|
650 |
+
"grad_norm": 0.7245302420505394,
|
651 |
+
"learning_rate": 1.2517006802721089e-06,
|
652 |
+
"loss": 0.5085,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.019036896781126862,
|
657 |
+
"grad_norm": 0.7287781044325405,
|
658 |
+
"learning_rate": 1.2653061224489795e-06,
|
659 |
+
"loss": 0.4837,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.019241594595977688,
|
664 |
+
"grad_norm": 0.7461257075758424,
|
665 |
+
"learning_rate": 1.2789115646258504e-06,
|
666 |
+
"loss": 0.4847,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.019446292410828514,
|
671 |
+
"grad_norm": 0.7500567577642135,
|
672 |
+
"learning_rate": 1.292517006802721e-06,
|
673 |
+
"loss": 0.5023,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.01965099022567934,
|
678 |
+
"grad_norm": 0.7516926737451503,
|
679 |
+
"learning_rate": 1.3061224489795917e-06,
|
680 |
+
"loss": 0.4944,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.019855688040530166,
|
685 |
+
"grad_norm": 0.8160475040600308,
|
686 |
+
"learning_rate": 1.3197278911564623e-06,
|
687 |
+
"loss": 0.4707,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.020060385855380995,
|
692 |
+
"grad_norm": 0.7313987935291313,
|
693 |
+
"learning_rate": 1.3333333333333332e-06,
|
694 |
+
"loss": 0.4631,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.02026508367023182,
|
699 |
+
"grad_norm": 0.7272827048713341,
|
700 |
+
"learning_rate": 1.3469387755102039e-06,
|
701 |
+
"loss": 0.4912,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.020469781485082647,
|
706 |
+
"grad_norm": 0.7148392974765637,
|
707 |
+
"learning_rate": 1.3605442176870747e-06,
|
708 |
+
"loss": 0.4686,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.020674479299933473,
|
713 |
+
"grad_norm": 0.8073254642999934,
|
714 |
+
"learning_rate": 1.3741496598639456e-06,
|
715 |
+
"loss": 0.4889,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.0208791771147843,
|
720 |
+
"grad_norm": 0.7585784341693678,
|
721 |
+
"learning_rate": 1.3877551020408162e-06,
|
722 |
+
"loss": 0.4661,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.021083874929635125,
|
727 |
+
"grad_norm": 0.750059071249337,
|
728 |
+
"learning_rate": 1.4013605442176871e-06,
|
729 |
+
"loss": 0.4856,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.021288572744485954,
|
734 |
+
"grad_norm": 0.7391246566572075,
|
735 |
+
"learning_rate": 1.4149659863945578e-06,
|
736 |
+
"loss": 0.4835,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.02149327055933678,
|
741 |
+
"grad_norm": 0.7961401475792825,
|
742 |
+
"learning_rate": 1.4285714285714286e-06,
|
743 |
+
"loss": 0.5078,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.021697968374187606,
|
748 |
+
"grad_norm": 0.736443177126423,
|
749 |
+
"learning_rate": 1.4421768707482993e-06,
|
750 |
+
"loss": 0.4754,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.021902666189038432,
|
755 |
+
"grad_norm": 0.7433000385873849,
|
756 |
+
"learning_rate": 1.4557823129251701e-06,
|
757 |
+
"loss": 0.5051,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.022107364003889258,
|
762 |
+
"grad_norm": 0.742852894387874,
|
763 |
+
"learning_rate": 1.4693877551020408e-06,
|
764 |
+
"loss": 0.4815,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.022312061818740084,
|
769 |
+
"grad_norm": 0.7321778169129644,
|
770 |
+
"learning_rate": 1.4829931972789117e-06,
|
771 |
+
"loss": 0.4883,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.022516759633590913,
|
776 |
+
"grad_norm": 0.7374200652655346,
|
777 |
+
"learning_rate": 1.4965986394557823e-06,
|
778 |
+
"loss": 0.5235,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.02272145744844174,
|
783 |
+
"grad_norm": 0.772981855244519,
|
784 |
+
"learning_rate": 1.510204081632653e-06,
|
785 |
+
"loss": 0.5008,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.022926155263292565,
|
790 |
+
"grad_norm": 0.7342674795579016,
|
791 |
+
"learning_rate": 1.5238095238095236e-06,
|
792 |
+
"loss": 0.4671,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.02313085307814339,
|
797 |
+
"grad_norm": 0.7795902315585469,
|
798 |
+
"learning_rate": 1.5374149659863945e-06,
|
799 |
+
"loss": 0.507,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.023335550892994217,
|
804 |
+
"grad_norm": 0.7765099211131105,
|
805 |
+
"learning_rate": 1.5510204081632651e-06,
|
806 |
+
"loss": 0.5251,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.023540248707845043,
|
811 |
+
"grad_norm": 0.7386929957340117,
|
812 |
+
"learning_rate": 1.564625850340136e-06,
|
813 |
+
"loss": 0.4578,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.02374494652269587,
|
818 |
+
"grad_norm": 0.7248512159636582,
|
819 |
+
"learning_rate": 1.5782312925170067e-06,
|
820 |
+
"loss": 0.48,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.023949644337546698,
|
825 |
+
"grad_norm": 0.7545806311647761,
|
826 |
+
"learning_rate": 1.5918367346938775e-06,
|
827 |
+
"loss": 0.4884,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.024154342152397524,
|
832 |
+
"grad_norm": 0.7683287783699582,
|
833 |
+
"learning_rate": 1.6054421768707482e-06,
|
834 |
+
"loss": 0.4834,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.02435903996724835,
|
839 |
+
"grad_norm": 0.775426549385026,
|
840 |
+
"learning_rate": 1.619047619047619e-06,
|
841 |
+
"loss": 0.4822,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.024563737782099176,
|
846 |
+
"grad_norm": 0.7149469826873975,
|
847 |
+
"learning_rate": 1.6326530612244897e-06,
|
848 |
+
"loss": 0.4721,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.02476843559695,
|
853 |
+
"grad_norm": 0.7985393152422335,
|
854 |
+
"learning_rate": 1.6462585034013606e-06,
|
855 |
+
"loss": 0.5166,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.024973133411800828,
|
860 |
+
"grad_norm": 0.7885248764092557,
|
861 |
+
"learning_rate": 1.6598639455782312e-06,
|
862 |
+
"loss": 0.5091,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.025177831226651657,
|
867 |
+
"grad_norm": 0.7531097232781883,
|
868 |
+
"learning_rate": 1.673469387755102e-06,
|
869 |
+
"loss": 0.5133,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.025382529041502483,
|
874 |
+
"grad_norm": 0.7097213698861701,
|
875 |
+
"learning_rate": 1.6870748299319727e-06,
|
876 |
+
"loss": 0.5001,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.02558722685635331,
|
881 |
+
"grad_norm": 0.6936318152279768,
|
882 |
+
"learning_rate": 1.7006802721088434e-06,
|
883 |
+
"loss": 0.4611,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.025791924671204135,
|
888 |
+
"grad_norm": 0.7442480820206602,
|
889 |
+
"learning_rate": 1.714285714285714e-06,
|
890 |
+
"loss": 0.5107,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.02599662248605496,
|
895 |
+
"grad_norm": 0.7310368101162509,
|
896 |
+
"learning_rate": 1.727891156462585e-06,
|
897 |
+
"loss": 0.4568,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.026201320300905787,
|
902 |
+
"grad_norm": 0.7723563494615043,
|
903 |
+
"learning_rate": 1.7414965986394556e-06,
|
904 |
+
"loss": 0.4976,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.026406018115756616,
|
909 |
+
"grad_norm": 0.7688284872373655,
|
910 |
+
"learning_rate": 1.7551020408163264e-06,
|
911 |
+
"loss": 0.4876,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.026610715930607442,
|
916 |
+
"grad_norm": 0.7663908612309938,
|
917 |
+
"learning_rate": 1.768707482993197e-06,
|
918 |
+
"loss": 0.5089,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.026815413745458268,
|
923 |
+
"grad_norm": 0.6966352320510637,
|
924 |
+
"learning_rate": 1.782312925170068e-06,
|
925 |
+
"loss": 0.4537,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.027020111560309094,
|
930 |
+
"grad_norm": 0.6933747179682217,
|
931 |
+
"learning_rate": 1.7959183673469386e-06,
|
932 |
+
"loss": 0.4431,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.02722480937515992,
|
937 |
+
"grad_norm": 0.7620187715357651,
|
938 |
+
"learning_rate": 1.8095238095238095e-06,
|
939 |
+
"loss": 0.5002,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.027429507190010746,
|
944 |
+
"grad_norm": 0.694229773433825,
|
945 |
+
"learning_rate": 1.8231292517006801e-06,
|
946 |
+
"loss": 0.4602,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.02763420500486157,
|
951 |
+
"grad_norm": 0.7152627743695282,
|
952 |
+
"learning_rate": 1.836734693877551e-06,
|
953 |
+
"loss": 0.46,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.0278389028197124,
|
958 |
+
"grad_norm": 0.7175467946942147,
|
959 |
+
"learning_rate": 1.8503401360544217e-06,
|
960 |
+
"loss": 0.4687,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.028043600634563227,
|
965 |
+
"grad_norm": 0.7852808070086453,
|
966 |
+
"learning_rate": 1.8639455782312925e-06,
|
967 |
+
"loss": 0.5045,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.028248298449414053,
|
972 |
+
"grad_norm": 0.7212069697520485,
|
973 |
+
"learning_rate": 1.8775510204081632e-06,
|
974 |
+
"loss": 0.458,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.02845299626426488,
|
979 |
+
"grad_norm": 0.6901869666091209,
|
980 |
+
"learning_rate": 1.891156462585034e-06,
|
981 |
+
"loss": 0.4873,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.028657694079115704,
|
986 |
+
"grad_norm": 0.7038286804084832,
|
987 |
+
"learning_rate": 1.9047619047619045e-06,
|
988 |
+
"loss": 0.4575,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.02886239189396653,
|
993 |
+
"grad_norm": 0.7736514303776025,
|
994 |
+
"learning_rate": 1.918367346938775e-06,
|
995 |
+
"loss": 0.4989,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.02906708970881736,
|
1000 |
+
"grad_norm": 0.7546506061753928,
|
1001 |
+
"learning_rate": 1.931972789115646e-06,
|
1002 |
+
"loss": 0.6157,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.029271787523668186,
|
1007 |
+
"grad_norm": 0.7502287441885653,
|
1008 |
+
"learning_rate": 1.945578231292517e-06,
|
1009 |
+
"loss": 0.4744,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.02947648533851901,
|
1014 |
+
"grad_norm": 0.7544747394474504,
|
1015 |
+
"learning_rate": 1.9591836734693877e-06,
|
1016 |
+
"loss": 0.4652,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.029681183153369838,
|
1021 |
+
"grad_norm": 0.7400203790224271,
|
1022 |
+
"learning_rate": 1.972789115646258e-06,
|
1023 |
+
"loss": 0.4749,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.029885880968220663,
|
1028 |
+
"grad_norm": 0.7756604473816919,
|
1029 |
+
"learning_rate": 1.986394557823129e-06,
|
1030 |
+
"loss": 0.4879,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.03009057878307149,
|
1035 |
+
"grad_norm": 0.7364241267157726,
|
1036 |
+
"learning_rate": 2e-06,
|
1037 |
+
"loss": 0.4641,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.03029527659792232,
|
1042 |
+
"grad_norm": 0.7509999341558731,
|
1043 |
+
"learning_rate": 1.9999997801737146e-06,
|
1044 |
+
"loss": 0.4716,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.030499974412773145,
|
1049 |
+
"grad_norm": 0.7817167258395246,
|
1050 |
+
"learning_rate": 1.9999991206949555e-06,
|
1051 |
+
"loss": 0.478,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.03070467222762397,
|
1056 |
+
"grad_norm": 0.6975681554994494,
|
1057 |
+
"learning_rate": 1.9999980215640124e-06,
|
1058 |
+
"loss": 0.4698,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.030909370042474796,
|
1063 |
+
"grad_norm": 0.6671508819481775,
|
1064 |
+
"learning_rate": 1.9999964827813685e-06,
|
1065 |
+
"loss": 0.4502,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.031114067857325622,
|
1070 |
+
"grad_norm": 0.7588040820967348,
|
1071 |
+
"learning_rate": 1.9999945043477006e-06,
|
1072 |
+
"loss": 0.4932,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.03131876567217645,
|
1077 |
+
"grad_norm": 0.7918237654214221,
|
1078 |
+
"learning_rate": 1.9999920862638785e-06,
|
1079 |
+
"loss": 0.4676,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.031523463487027274,
|
1084 |
+
"grad_norm": 0.7313481708497578,
|
1085 |
+
"learning_rate": 1.999989228530965e-06,
|
1086 |
+
"loss": 0.458,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.031728161301878104,
|
1091 |
+
"grad_norm": 0.7363675329922608,
|
1092 |
+
"learning_rate": 1.9999859311502164e-06,
|
1093 |
+
"loss": 0.4794,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.031932859116728926,
|
1098 |
+
"grad_norm": 0.7511639384926047,
|
1099 |
+
"learning_rate": 1.999982194123083e-06,
|
1100 |
+
"loss": 0.4811,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.032137556931579755,
|
1105 |
+
"grad_norm": 0.6977601768137399,
|
1106 |
+
"learning_rate": 1.9999780174512074e-06,
|
1107 |
+
"loss": 0.5046,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.032342254746430585,
|
1112 |
+
"grad_norm": 0.6871160044462953,
|
1113 |
+
"learning_rate": 1.999973401136426e-06,
|
1114 |
+
"loss": 0.4473,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.03254695256128141,
|
1119 |
+
"grad_norm": 0.735276225575691,
|
1120 |
+
"learning_rate": 1.999968345180768e-06,
|
1121 |
+
"loss": 0.4769,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.03275165037613224,
|
1126 |
+
"grad_norm": 0.6707772270842888,
|
1127 |
+
"learning_rate": 1.999962849586457e-06,
|
1128 |
+
"loss": 0.4395,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.03295634819098306,
|
1133 |
+
"grad_norm": 0.7714337406838349,
|
1134 |
+
"learning_rate": 1.9999569143559085e-06,
|
1135 |
+
"loss": 0.4658,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.03316104600583389,
|
1140 |
+
"grad_norm": 0.7896606525524605,
|
1141 |
+
"learning_rate": 1.999950539491732e-06,
|
1142 |
+
"loss": 0.4645,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.03336574382068471,
|
1147 |
+
"grad_norm": 0.7359544675011239,
|
1148 |
+
"learning_rate": 1.999943724996731e-06,
|
1149 |
+
"loss": 0.4671,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.03357044163553554,
|
1154 |
+
"grad_norm": 0.6942155729771998,
|
1155 |
+
"learning_rate": 1.9999364708739005e-06,
|
1156 |
+
"loss": 0.4567,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.03377513945038637,
|
1161 |
+
"grad_norm": 0.7156881239994389,
|
1162 |
+
"learning_rate": 1.9999287771264305e-06,
|
1163 |
+
"loss": 0.4871,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.03397983726523719,
|
1168 |
+
"grad_norm": 0.7027330885247588,
|
1169 |
+
"learning_rate": 1.999920643757703e-06,
|
1170 |
+
"loss": 0.4371,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.03418453508008802,
|
1175 |
+
"grad_norm": 0.7022489082551948,
|
1176 |
+
"learning_rate": 1.9999120707712943e-06,
|
1177 |
+
"loss": 0.45,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.034389232894938844,
|
1182 |
+
"grad_norm": 0.7600832151805308,
|
1183 |
+
"learning_rate": 1.9999030581709736e-06,
|
1184 |
+
"loss": 0.4812,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.03459393070978967,
|
1189 |
+
"grad_norm": 0.7757365362216246,
|
1190 |
+
"learning_rate": 1.9998936059607028e-06,
|
1191 |
+
"loss": 0.4951,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.0347986285246405,
|
1196 |
+
"grad_norm": 0.7180624522326351,
|
1197 |
+
"learning_rate": 1.9998837141446378e-06,
|
1198 |
+
"loss": 0.4733,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.035003326339491325,
|
1203 |
+
"grad_norm": 0.8012677566963108,
|
1204 |
+
"learning_rate": 1.9998733827271277e-06,
|
1205 |
+
"loss": 0.4854,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.035208024154342155,
|
1210 |
+
"grad_norm": 0.715314370525801,
|
1211 |
+
"learning_rate": 1.999862611712715e-06,
|
1212 |
+
"loss": 0.4777,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.03541272196919298,
|
1217 |
+
"grad_norm": 0.7191382757417352,
|
1218 |
+
"learning_rate": 1.9998514011061344e-06,
|
1219 |
+
"loss": 0.4637,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.035617419784043806,
|
1224 |
+
"grad_norm": 0.7116753984408628,
|
1225 |
+
"learning_rate": 1.9998397509123154e-06,
|
1226 |
+
"loss": 0.4536,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.03582211759889463,
|
1231 |
+
"grad_norm": 0.7598078550909712,
|
1232 |
+
"learning_rate": 1.9998276611363797e-06,
|
1233 |
+
"loss": 0.4908,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.03602681541374546,
|
1238 |
+
"grad_norm": 0.6563039003765047,
|
1239 |
+
"learning_rate": 1.999815131783643e-06,
|
1240 |
+
"loss": 0.449,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.03623151322859629,
|
1245 |
+
"grad_norm": 0.719561949641505,
|
1246 |
+
"learning_rate": 1.999802162859613e-06,
|
1247 |
+
"loss": 0.4741,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.03643621104344711,
|
1252 |
+
"grad_norm": 0.7109902438469043,
|
1253 |
+
"learning_rate": 1.999788754369993e-06,
|
1254 |
+
"loss": 0.4701,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.03664090885829794,
|
1259 |
+
"grad_norm": 0.7065392449298251,
|
1260 |
+
"learning_rate": 1.9997749063206762e-06,
|
1261 |
+
"loss": 0.4714,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.03684560667314876,
|
1266 |
+
"grad_norm": 0.7696360740535267,
|
1267 |
+
"learning_rate": 1.9997606187177524e-06,
|
1268 |
+
"loss": 0.4875,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.03705030448799959,
|
1273 |
+
"grad_norm": 0.7305783700088637,
|
1274 |
+
"learning_rate": 1.999745891567502e-06,
|
1275 |
+
"loss": 0.4606,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.037255002302850414,
|
1280 |
+
"grad_norm": 0.7270975727384246,
|
1281 |
+
"learning_rate": 1.9997307248764014e-06,
|
1282 |
+
"loss": 0.4198,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.03745970011770124,
|
1287 |
+
"grad_norm": 0.7569285986642791,
|
1288 |
+
"learning_rate": 1.9997151186511173e-06,
|
1289 |
+
"loss": 0.4354,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.03766439793255207,
|
1294 |
+
"grad_norm": 0.7219339206651326,
|
1295 |
+
"learning_rate": 1.9996990728985115e-06,
|
1296 |
+
"loss": 0.4378,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.037869095747402895,
|
1301 |
+
"grad_norm": 0.7690405011750759,
|
1302 |
+
"learning_rate": 1.9996825876256386e-06,
|
1303 |
+
"loss": 0.4791,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.038073793562253724,
|
1308 |
+
"grad_norm": 0.7552362068529521,
|
1309 |
+
"learning_rate": 1.9996656628397466e-06,
|
1310 |
+
"loss": 0.4672,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.03827849137710455,
|
1315 |
+
"grad_norm": 0.7341580278198813,
|
1316 |
+
"learning_rate": 1.999648298548276e-06,
|
1317 |
+
"loss": 0.4677,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.038483189191955376,
|
1322 |
+
"grad_norm": 0.7067121453226938,
|
1323 |
+
"learning_rate": 1.9996304947588612e-06,
|
1324 |
+
"loss": 0.4727,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.038687887006806206,
|
1329 |
+
"grad_norm": 0.7237165727925357,
|
1330 |
+
"learning_rate": 1.99961225147933e-06,
|
1331 |
+
"loss": 0.4446,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.03889258482165703,
|
1336 |
+
"grad_norm": 0.7069486805133093,
|
1337 |
+
"learning_rate": 1.999593568717703e-06,
|
1338 |
+
"loss": 0.4599,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.03909728263650786,
|
1343 |
+
"grad_norm": 0.897481774030034,
|
1344 |
+
"learning_rate": 1.9995744464821936e-06,
|
1345 |
+
"loss": 0.5129,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.03930198045135868,
|
1350 |
+
"grad_norm": 0.7488636278687589,
|
1351 |
+
"learning_rate": 1.9995548847812097e-06,
|
1352 |
+
"loss": 0.5184,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.03950667826620951,
|
1357 |
+
"grad_norm": 0.7194583225483666,
|
1358 |
+
"learning_rate": 1.9995348836233515e-06,
|
1359 |
+
"loss": 0.4915,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.03971137608106033,
|
1364 |
+
"grad_norm": 0.7384378767131218,
|
1365 |
+
"learning_rate": 1.999514443017412e-06,
|
1366 |
+
"loss": 0.4487,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.03991607389591116,
|
1371 |
+
"grad_norm": 0.7577332351147034,
|
1372 |
+
"learning_rate": 1.9994935629723784e-06,
|
1373 |
+
"loss": 0.4842,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.04012077171076199,
|
1378 |
+
"grad_norm": 0.7207002083905842,
|
1379 |
+
"learning_rate": 1.999472243497431e-06,
|
1380 |
+
"loss": 0.4698,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.04032546952561281,
|
1385 |
+
"grad_norm": 0.8010492120535461,
|
1386 |
+
"learning_rate": 1.9994504846019423e-06,
|
1387 |
+
"loss": 0.4561,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.04053016734046364,
|
1392 |
+
"grad_norm": 0.7453701461541147,
|
1393 |
+
"learning_rate": 1.9994282862954787e-06,
|
1394 |
+
"loss": 0.4806,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.040734865155314465,
|
1399 |
+
"grad_norm": 0.7255193966716207,
|
1400 |
+
"learning_rate": 1.9994056485878002e-06,
|
1401 |
+
"loss": 0.4511,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.040939562970165294,
|
1406 |
+
"grad_norm": 0.7957588909816856,
|
1407 |
+
"learning_rate": 1.9993825714888594e-06,
|
1408 |
+
"loss": 0.4775,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.04114426078501612,
|
1413 |
+
"grad_norm": 0.7304580504624026,
|
1414 |
+
"learning_rate": 1.999359055008802e-06,
|
1415 |
+
"loss": 0.4476,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.041348958599866946,
|
1420 |
+
"grad_norm": 0.8052138479705295,
|
1421 |
+
"learning_rate": 1.999335099157967e-06,
|
1422 |
+
"loss": 0.4621,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.041553656414717775,
|
1427 |
+
"grad_norm": 0.7344879094324241,
|
1428 |
+
"learning_rate": 1.999310703946887e-06,
|
1429 |
+
"loss": 0.448,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.0417583542295686,
|
1434 |
+
"grad_norm": 0.804269507197302,
|
1435 |
+
"learning_rate": 1.999285869386287e-06,
|
1436 |
+
"loss": 0.471,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.04196305204441943,
|
1441 |
+
"grad_norm": 0.7284627322104599,
|
1442 |
+
"learning_rate": 1.9992605954870867e-06,
|
1443 |
+
"loss": 0.4418,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.04216774985927025,
|
1448 |
+
"grad_norm": 0.7243013667651625,
|
1449 |
+
"learning_rate": 1.999234882260396e-06,
|
1450 |
+
"loss": 0.4669,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.04237244767412108,
|
1455 |
+
"grad_norm": 0.677583318692503,
|
1456 |
+
"learning_rate": 1.9992087297175213e-06,
|
1457 |
+
"loss": 0.4447,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.04257714548897191,
|
1462 |
+
"grad_norm": 0.7334595699121094,
|
1463 |
+
"learning_rate": 1.9991821378699598e-06,
|
1464 |
+
"loss": 0.4719,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.04278184330382273,
|
1469 |
+
"grad_norm": 0.7351912069847943,
|
1470 |
+
"learning_rate": 1.999155106729403e-06,
|
1471 |
+
"loss": 0.4758,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.04298654111867356,
|
1476 |
+
"grad_norm": 0.7262994043092325,
|
1477 |
+
"learning_rate": 1.9991276363077355e-06,
|
1478 |
+
"loss": 0.4636,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.04319123893352438,
|
1483 |
+
"grad_norm": 0.7170624975773432,
|
1484 |
+
"learning_rate": 1.999099726617034e-06,
|
1485 |
+
"loss": 0.4432,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.04339593674837521,
|
1490 |
+
"grad_norm": 0.7756861925710989,
|
1491 |
+
"learning_rate": 1.9990713776695697e-06,
|
1492 |
+
"loss": 0.4277,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.043600634563226034,
|
1497 |
+
"grad_norm": 0.7766290291464314,
|
1498 |
+
"learning_rate": 1.999042589477806e-06,
|
1499 |
+
"loss": 0.4521,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.043805332378076864,
|
1504 |
+
"grad_norm": 0.7675003445260637,
|
1505 |
+
"learning_rate": 1.9990133620543992e-06,
|
1506 |
+
"loss": 0.4728,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.04401003019292769,
|
1511 |
+
"grad_norm": 0.7502537566865808,
|
1512 |
+
"learning_rate": 1.9989836954122006e-06,
|
1513 |
+
"loss": 0.4919,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.044214728007778516,
|
1518 |
+
"grad_norm": 0.7256221777073304,
|
1519 |
+
"learning_rate": 1.998953589564252e-06,
|
1520 |
+
"loss": 0.4427,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.044419425822629345,
|
1525 |
+
"grad_norm": 0.7209802907423725,
|
1526 |
+
"learning_rate": 1.9989230445237905e-06,
|
1527 |
+
"loss": 0.4482,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.04462412363748017,
|
1532 |
+
"grad_norm": 0.761848969478383,
|
1533 |
+
"learning_rate": 1.9988920603042437e-06,
|
1534 |
+
"loss": 0.4623,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.044828821452331,
|
1539 |
+
"grad_norm": 0.7511377700619639,
|
1540 |
+
"learning_rate": 1.9988606369192357e-06,
|
1541 |
+
"loss": 0.4695,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.045033519267181826,
|
1546 |
+
"grad_norm": 0.684910692983434,
|
1547 |
+
"learning_rate": 1.998828774382581e-06,
|
1548 |
+
"loss": 0.4546,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.04523821708203265,
|
1553 |
+
"grad_norm": 0.8229255435418116,
|
1554 |
+
"learning_rate": 1.998796472708288e-06,
|
1555 |
+
"loss": 0.4736,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.04544291489688348,
|
1560 |
+
"grad_norm": 0.7208349457907924,
|
1561 |
+
"learning_rate": 1.998763731910558e-06,
|
1562 |
+
"loss": 0.4464,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.0456476127117343,
|
1567 |
+
"grad_norm": 0.8196660504458043,
|
1568 |
+
"learning_rate": 1.998730552003786e-06,
|
1569 |
+
"loss": 0.5129,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.04585231052658513,
|
1574 |
+
"grad_norm": 0.7410783352083353,
|
1575 |
+
"learning_rate": 1.99869693300256e-06,
|
1576 |
+
"loss": 0.4716,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.04605700834143595,
|
1581 |
+
"grad_norm": 0.6829979843011463,
|
1582 |
+
"learning_rate": 1.9986628749216598e-06,
|
1583 |
+
"loss": 0.4543,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.04626170615628678,
|
1588 |
+
"grad_norm": 0.6883777439066587,
|
1589 |
+
"learning_rate": 1.9986283777760598e-06,
|
1590 |
+
"loss": 0.4441,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.04646640397113761,
|
1595 |
+
"grad_norm": 0.7411624814334564,
|
1596 |
+
"learning_rate": 1.9985934415809266e-06,
|
1597 |
+
"loss": 0.4902,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.046671101785988434,
|
1602 |
+
"grad_norm": 0.7207442928316582,
|
1603 |
+
"learning_rate": 1.99855806635162e-06,
|
1604 |
+
"loss": 0.4502,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.04687579960083926,
|
1609 |
+
"grad_norm": 0.7535800049970842,
|
1610 |
+
"learning_rate": 1.9985222521036923e-06,
|
1611 |
+
"loss": 0.4588,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.047080497415690085,
|
1616 |
+
"grad_norm": 0.755131046087142,
|
1617 |
+
"learning_rate": 1.9984859988528896e-06,
|
1618 |
+
"loss": 0.478,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.047285195230540915,
|
1623 |
+
"grad_norm": 0.7363267944788255,
|
1624 |
+
"learning_rate": 1.9984493066151515e-06,
|
1625 |
+
"loss": 0.4722,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.04748989304539174,
|
1630 |
+
"grad_norm": 0.7175156333070826,
|
1631 |
+
"learning_rate": 1.9984121754066084e-06,
|
1632 |
+
"loss": 0.4284,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.04769459086024257,
|
1637 |
+
"grad_norm": 0.7021868758602576,
|
1638 |
+
"learning_rate": 1.9983746052435867e-06,
|
1639 |
+
"loss": 0.4549,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.047899288675093396,
|
1644 |
+
"grad_norm": 0.7661651319293146,
|
1645 |
+
"learning_rate": 1.998336596142603e-06,
|
1646 |
+
"loss": 0.4626,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.04810398648994422,
|
1651 |
+
"grad_norm": 0.7200117942966474,
|
1652 |
+
"learning_rate": 1.9982981481203685e-06,
|
1653 |
+
"loss": 0.4602,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.04830868430479505,
|
1658 |
+
"grad_norm": 0.7402636115111145,
|
1659 |
+
"learning_rate": 1.9982592611937875e-06,
|
1660 |
+
"loss": 0.462,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.04851338211964587,
|
1665 |
+
"grad_norm": 0.7289521015317652,
|
1666 |
+
"learning_rate": 1.998219935379956e-06,
|
1667 |
+
"loss": 0.4247,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.0487180799344967,
|
1672 |
+
"grad_norm": 0.8254564955090967,
|
1673 |
+
"learning_rate": 1.9981801706961637e-06,
|
1674 |
+
"loss": 0.445,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.04892277774934753,
|
1679 |
+
"grad_norm": 0.711987818470011,
|
1680 |
+
"learning_rate": 1.9981399671598938e-06,
|
1681 |
+
"loss": 0.4373,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.04912747556419835,
|
1686 |
+
"grad_norm": 0.7578069994316992,
|
1687 |
+
"learning_rate": 1.9980993247888215e-06,
|
1688 |
+
"loss": 0.4397,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.04933217337904918,
|
1693 |
+
"grad_norm": 0.7111156315088227,
|
1694 |
+
"learning_rate": 1.9980582436008155e-06,
|
1695 |
+
"loss": 0.444,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.0495368711939,
|
1700 |
+
"grad_norm": 0.6825451116028749,
|
1701 |
+
"learning_rate": 1.998016723613937e-06,
|
1702 |
+
"loss": 0.4216,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.04974156900875083,
|
1707 |
+
"grad_norm": 0.717357311135891,
|
1708 |
+
"learning_rate": 1.9979747648464406e-06,
|
1709 |
+
"loss": 0.4393,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.049946266823601655,
|
1714 |
+
"grad_norm": 0.7431878666336732,
|
1715 |
+
"learning_rate": 1.9979323673167735e-06,
|
1716 |
+
"loss": 0.4588,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.050150964638452485,
|
1721 |
+
"grad_norm": 0.7393037207206594,
|
1722 |
+
"learning_rate": 1.997889531043576e-06,
|
1723 |
+
"loss": 0.4547,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.050355662453303314,
|
1728 |
+
"grad_norm": 0.751624588819876,
|
1729 |
+
"learning_rate": 1.997846256045681e-06,
|
1730 |
+
"loss": 0.4423,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.050560360268154136,
|
1735 |
+
"grad_norm": 0.7291703435937729,
|
1736 |
+
"learning_rate": 1.9978025423421143e-06,
|
1737 |
+
"loss": 0.4577,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.050765058083004966,
|
1742 |
+
"grad_norm": 0.7730058435275767,
|
1743 |
+
"learning_rate": 1.9977583899520954e-06,
|
1744 |
+
"loss": 0.4725,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.05096975589785579,
|
1749 |
+
"grad_norm": 0.7388265631923211,
|
1750 |
+
"learning_rate": 1.9977137988950354e-06,
|
1751 |
+
"loss": 0.4915,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.05117445371270662,
|
1756 |
+
"grad_norm": 0.7253056655402751,
|
1757 |
+
"learning_rate": 1.9976687691905393e-06,
|
1758 |
+
"loss": 0.4463,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.05137915152755744,
|
1763 |
+
"grad_norm": 0.7279513578282504,
|
1764 |
+
"learning_rate": 1.997623300858404e-06,
|
1765 |
+
"loss": 0.4692,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.05158384934240827,
|
1770 |
+
"grad_norm": 0.7758619445867678,
|
1771 |
+
"learning_rate": 1.99757739391862e-06,
|
1772 |
+
"loss": 0.4359,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.0517885471572591,
|
1777 |
+
"grad_norm": 0.6934936677414176,
|
1778 |
+
"learning_rate": 1.9975310483913706e-06,
|
1779 |
+
"loss": 0.4342,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.05199324497210992,
|
1784 |
+
"grad_norm": 0.785492944076531,
|
1785 |
+
"learning_rate": 1.9974842642970316e-06,
|
1786 |
+
"loss": 0.4762,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.05219794278696075,
|
1791 |
+
"grad_norm": 0.693346587621168,
|
1792 |
+
"learning_rate": 1.9974370416561716e-06,
|
1793 |
+
"loss": 0.4077,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.05240264060181157,
|
1798 |
+
"grad_norm": 0.7036807587452536,
|
1799 |
+
"learning_rate": 1.9973893804895526e-06,
|
1800 |
+
"loss": 0.4559,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.0526073384166624,
|
1805 |
+
"grad_norm": 0.6487321250079171,
|
1806 |
+
"learning_rate": 1.997341280818128e-06,
|
1807 |
+
"loss": 0.4445,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.05281203623151323,
|
1812 |
+
"grad_norm": 0.7581793864091325,
|
1813 |
+
"learning_rate": 1.9972927426630464e-06,
|
1814 |
+
"loss": 0.4189,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.053016734046364054,
|
1819 |
+
"grad_norm": 0.7654003299344445,
|
1820 |
+
"learning_rate": 1.9972437660456465e-06,
|
1821 |
+
"loss": 0.4772,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.053221431861214884,
|
1826 |
+
"grad_norm": 0.7482689765950153,
|
1827 |
+
"learning_rate": 1.9971943509874614e-06,
|
1828 |
+
"loss": 0.4577,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.053426129676065706,
|
1833 |
+
"grad_norm": 0.7328225919609754,
|
1834 |
+
"learning_rate": 1.997144497510217e-06,
|
1835 |
+
"loss": 0.4301,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.053630827490916536,
|
1840 |
+
"grad_norm": 0.734577771662883,
|
1841 |
+
"learning_rate": 1.9970942056358307e-06,
|
1842 |
+
"loss": 0.4721,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.05383552530576736,
|
1847 |
+
"grad_norm": 0.7974471697046129,
|
1848 |
+
"learning_rate": 1.997043475386414e-06,
|
1849 |
+
"loss": 0.4759,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.05404022312061819,
|
1854 |
+
"grad_norm": 0.7204102805022299,
|
1855 |
+
"learning_rate": 1.99699230678427e-06,
|
1856 |
+
"loss": 0.4159,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.05424492093546902,
|
1861 |
+
"grad_norm": 0.8012057502786673,
|
1862 |
+
"learning_rate": 1.996940699851896e-06,
|
1863 |
+
"loss": 0.4784,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.05444961875031984,
|
1868 |
+
"grad_norm": 0.7456181199531785,
|
1869 |
+
"learning_rate": 1.9968886546119805e-06,
|
1870 |
+
"loss": 0.4716,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.05465431656517067,
|
1875 |
+
"grad_norm": 0.7582815001255205,
|
1876 |
+
"learning_rate": 1.996836171087405e-06,
|
1877 |
+
"loss": 0.4561,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.05485901438002149,
|
1882 |
+
"grad_norm": 0.7334168776176787,
|
1883 |
+
"learning_rate": 1.996783249301245e-06,
|
1884 |
+
"loss": 0.4344,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.05506371219487232,
|
1889 |
+
"grad_norm": 0.6872926048341936,
|
1890 |
+
"learning_rate": 1.9967298892767674e-06,
|
1891 |
+
"loss": 0.4293,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.05526841000972314,
|
1896 |
+
"grad_norm": 0.7532210670290133,
|
1897 |
+
"learning_rate": 1.9966760910374313e-06,
|
1898 |
+
"loss": 0.4644,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.05547310782457397,
|
1903 |
+
"grad_norm": 0.7306067456669837,
|
1904 |
+
"learning_rate": 1.99662185460689e-06,
|
1905 |
+
"loss": 0.4618,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.0556778056394248,
|
1910 |
+
"grad_norm": 0.7456313505165526,
|
1911 |
+
"learning_rate": 1.9965671800089887e-06,
|
1912 |
+
"loss": 0.4389,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.055882503454275624,
|
1917 |
+
"grad_norm": 0.6963357390921938,
|
1918 |
+
"learning_rate": 1.9965120672677646e-06,
|
1919 |
+
"loss": 0.4596,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.056087201269126453,
|
1924 |
+
"grad_norm": 0.6963762346496246,
|
1925 |
+
"learning_rate": 1.9964565164074488e-06,
|
1926 |
+
"loss": 0.4452,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.056291899083977276,
|
1931 |
+
"grad_norm": 0.7538437049515703,
|
1932 |
+
"learning_rate": 1.996400527452464e-06,
|
1933 |
+
"loss": 0.442,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.056496596898828105,
|
1938 |
+
"grad_norm": 0.7129437285411915,
|
1939 |
+
"learning_rate": 1.9963441004274265e-06,
|
1940 |
+
"loss": 0.4575,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.056701294713678935,
|
1945 |
+
"grad_norm": 0.7500374688918953,
|
1946 |
+
"learning_rate": 1.9962872353571436e-06,
|
1947 |
+
"loss": 0.4739,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.05690599252852976,
|
1952 |
+
"grad_norm": 0.7695931372733311,
|
1953 |
+
"learning_rate": 1.996229932266617e-06,
|
1954 |
+
"loss": 0.4523,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.05711069034338059,
|
1959 |
+
"grad_norm": 0.8047384042314083,
|
1960 |
+
"learning_rate": 1.99617219118104e-06,
|
1961 |
+
"loss": 0.4541,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.05731538815823141,
|
1966 |
+
"grad_norm": 0.7337412326319969,
|
1967 |
+
"learning_rate": 1.9961140121257978e-06,
|
1968 |
+
"loss": 0.5429,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.05752008597308224,
|
1973 |
+
"grad_norm": 0.7647644479794993,
|
1974 |
+
"learning_rate": 1.99605539512647e-06,
|
1975 |
+
"loss": 0.4479,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.05772478378793306,
|
1980 |
+
"grad_norm": 0.7676226046817726,
|
1981 |
+
"learning_rate": 1.9959963402088274e-06,
|
1982 |
+
"loss": 0.4641,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.05792948160278389,
|
1987 |
+
"grad_norm": 0.7235143819897621,
|
1988 |
+
"learning_rate": 1.9959368473988333e-06,
|
1989 |
+
"loss": 0.4545,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.05813417941763472,
|
1994 |
+
"grad_norm": 0.7247778707795571,
|
1995 |
+
"learning_rate": 1.9958769167226444e-06,
|
1996 |
+
"loss": 0.4527,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.05833887723248554,
|
2001 |
+
"grad_norm": 0.7539665158584474,
|
2002 |
+
"learning_rate": 1.995816548206609e-06,
|
2003 |
+
"loss": 0.4458,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.05854357504733637,
|
2008 |
+
"grad_norm": 0.7532087725317325,
|
2009 |
+
"learning_rate": 1.995755741877269e-06,
|
2010 |
+
"loss": 0.4461,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.058748272862187194,
|
2015 |
+
"grad_norm": 0.7797916526020292,
|
2016 |
+
"learning_rate": 1.995694497761357e-06,
|
2017 |
+
"loss": 0.4665,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.05895297067703802,
|
2022 |
+
"grad_norm": 0.7517569918058703,
|
2023 |
+
"learning_rate": 1.9956328158857992e-06,
|
2024 |
+
"loss": 0.4728,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.059157668491888846,
|
2029 |
+
"grad_norm": 0.7570745421432602,
|
2030 |
+
"learning_rate": 1.995570696277715e-06,
|
2031 |
+
"loss": 0.4563,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.059362366306739675,
|
2036 |
+
"grad_norm": 0.740586734451177,
|
2037 |
+
"learning_rate": 1.995508138964415e-06,
|
2038 |
+
"loss": 0.4709,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.059567064121590504,
|
2043 |
+
"grad_norm": 0.7681915361666245,
|
2044 |
+
"learning_rate": 1.995445143973403e-06,
|
2045 |
+
"loss": 0.4503,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.05977176193644133,
|
2050 |
+
"grad_norm": 0.7455448750612553,
|
2051 |
+
"learning_rate": 1.9953817113323743e-06,
|
2052 |
+
"loss": 0.4529,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.059976459751292156,
|
2057 |
+
"grad_norm": 0.7745938996976398,
|
2058 |
+
"learning_rate": 1.9953178410692174e-06,
|
2059 |
+
"loss": 0.4256,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.06018115756614298,
|
2064 |
+
"grad_norm": 0.7431821602019313,
|
2065 |
+
"learning_rate": 1.9952535332120137e-06,
|
2066 |
+
"loss": 0.4453,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.06038585538099381,
|
2071 |
+
"grad_norm": 0.6903595364669262,
|
2072 |
+
"learning_rate": 1.9951887877890354e-06,
|
2073 |
+
"loss": 0.4339,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.06059055319584464,
|
2078 |
+
"grad_norm": 0.773597292773469,
|
2079 |
+
"learning_rate": 1.9951236048287483e-06,
|
2080 |
+
"loss": 0.4817,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.06079525101069546,
|
2085 |
+
"grad_norm": 0.7263693618591641,
|
2086 |
+
"learning_rate": 1.9950579843598105e-06,
|
2087 |
+
"loss": 0.4572,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.06099994882554629,
|
2092 |
+
"grad_norm": 0.7297961413486055,
|
2093 |
+
"learning_rate": 1.994991926411072e-06,
|
2094 |
+
"loss": 0.4359,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.06120464664039711,
|
2099 |
+
"grad_norm": 0.7855052727291876,
|
2100 |
+
"learning_rate": 1.9949254310115753e-06,
|
2101 |
+
"loss": 0.4568,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.06140934445524794,
|
2106 |
+
"grad_norm": 0.7300504368627593,
|
2107 |
+
"learning_rate": 1.994858498190556e-06,
|
2108 |
+
"loss": 0.4501,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.061614042270098764,
|
2113 |
+
"grad_norm": 0.7096161782700376,
|
2114 |
+
"learning_rate": 1.99479112797744e-06,
|
2115 |
+
"loss": 0.4663,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.06181874008494959,
|
2120 |
+
"grad_norm": 0.7018494412530502,
|
2121 |
+
"learning_rate": 1.9947233204018477e-06,
|
2122 |
+
"loss": 0.4401,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.06202343789980042,
|
2127 |
+
"grad_norm": 0.7907086687325865,
|
2128 |
+
"learning_rate": 1.9946550754935906e-06,
|
2129 |
+
"loss": 0.4394,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.062228135714651245,
|
2134 |
+
"grad_norm": 0.7637305795975494,
|
2135 |
+
"learning_rate": 1.9945863932826727e-06,
|
2136 |
+
"loss": 0.4368,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.062432833529502074,
|
2141 |
+
"grad_norm": 0.7745057196668337,
|
2142 |
+
"learning_rate": 1.9945172737992904e-06,
|
2143 |
+
"loss": 0.4926,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.0626375313443529,
|
2148 |
+
"grad_norm": 0.7367608831304401,
|
2149 |
+
"learning_rate": 1.994447717073832e-06,
|
2150 |
+
"loss": 0.4688,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.06284222915920372,
|
2155 |
+
"grad_norm": 0.7695856962055981,
|
2156 |
+
"learning_rate": 1.9943777231368794e-06,
|
2157 |
+
"loss": 0.4484,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.06304692697405455,
|
2162 |
+
"grad_norm": 0.7187776209986876,
|
2163 |
+
"learning_rate": 1.994307292019204e-06,
|
2164 |
+
"loss": 0.4444,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.06325162478890538,
|
2169 |
+
"grad_norm": 0.7347949665208309,
|
2170 |
+
"learning_rate": 1.994236423751772e-06,
|
2171 |
+
"loss": 0.4485,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.06345632260375621,
|
2176 |
+
"grad_norm": 0.7105615411584904,
|
2177 |
+
"learning_rate": 1.99416511836574e-06,
|
2178 |
+
"loss": 0.4115,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.06366102041860704,
|
2183 |
+
"grad_norm": 0.7092446318381356,
|
2184 |
+
"learning_rate": 1.994093375892459e-06,
|
2185 |
+
"loss": 0.4398,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.06386571823345785,
|
2190 |
+
"grad_norm": 0.770807237418002,
|
2191 |
+
"learning_rate": 1.9940211963634696e-06,
|
2192 |
+
"loss": 0.4413,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.06407041604830868,
|
2197 |
+
"grad_norm": 0.7396584102001305,
|
2198 |
+
"learning_rate": 1.9939485798105057e-06,
|
2199 |
+
"loss": 0.4851,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.06427511386315951,
|
2204 |
+
"grad_norm": 0.7444518429400907,
|
2205 |
+
"learning_rate": 1.9938755262654945e-06,
|
2206 |
+
"loss": 0.4337,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.06447981167801034,
|
2211 |
+
"grad_norm": 0.722720227886292,
|
2212 |
+
"learning_rate": 1.9938020357605527e-06,
|
2213 |
+
"loss": 0.4965,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.06468450949286117,
|
2218 |
+
"grad_norm": 0.7666649202795676,
|
2219 |
+
"learning_rate": 1.993728108327992e-06,
|
2220 |
+
"loss": 0.4532,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.06488920730771199,
|
2225 |
+
"grad_norm": 0.7549308832804502,
|
2226 |
+
"learning_rate": 1.9936537440003134e-06,
|
2227 |
+
"loss": 0.4582,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.06509390512256281,
|
2232 |
+
"grad_norm": 0.6872546619483418,
|
2233 |
+
"learning_rate": 1.993578942810212e-06,
|
2234 |
+
"loss": 0.4695,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.06529860293741364,
|
2239 |
+
"grad_norm": 0.7550879312423509,
|
2240 |
+
"learning_rate": 1.9935037047905748e-06,
|
2241 |
+
"loss": 0.4833,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.06550330075226447,
|
2246 |
+
"grad_norm": 0.7064631296777315,
|
2247 |
+
"learning_rate": 1.99342802997448e-06,
|
2248 |
+
"loss": 0.4724,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.0657079985671153,
|
2253 |
+
"grad_norm": 0.7041398494235039,
|
2254 |
+
"learning_rate": 1.9933519183951977e-06,
|
2255 |
+
"loss": 0.4441,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.06591269638196612,
|
2260 |
+
"grad_norm": 0.7624056534749137,
|
2261 |
+
"learning_rate": 1.9932753700861914e-06,
|
2262 |
+
"loss": 0.465,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.06611739419681695,
|
2267 |
+
"grad_norm": 0.7553645719854849,
|
2268 |
+
"learning_rate": 1.9931983850811155e-06,
|
2269 |
+
"loss": 0.4241,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.06632209201166778,
|
2274 |
+
"grad_norm": 0.7617302308064162,
|
2275 |
+
"learning_rate": 1.9931209634138158e-06,
|
2276 |
+
"loss": 0.4475,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.0665267898265186,
|
2281 |
+
"grad_norm": 0.7484410349937703,
|
2282 |
+
"learning_rate": 1.9930431051183324e-06,
|
2283 |
+
"loss": 0.432,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.06673148764136942,
|
2288 |
+
"grad_norm": 0.7283423040518047,
|
2289 |
+
"learning_rate": 1.9929648102288953e-06,
|
2290 |
+
"loss": 0.4388,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.06693618545622025,
|
2295 |
+
"grad_norm": 0.7852619772614368,
|
2296 |
+
"learning_rate": 1.9928860787799265e-06,
|
2297 |
+
"loss": 0.468,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.06714088327107108,
|
2302 |
+
"grad_norm": 0.7769054079891817,
|
2303 |
+
"learning_rate": 1.992806910806041e-06,
|
2304 |
+
"loss": 0.4579,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.06734558108592191,
|
2309 |
+
"grad_norm": 0.7619008198687942,
|
2310 |
+
"learning_rate": 1.992727306342045e-06,
|
2311 |
+
"loss": 0.4789,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.06755027890077274,
|
2316 |
+
"grad_norm": 0.7607061858221339,
|
2317 |
+
"learning_rate": 1.9926472654229376e-06,
|
2318 |
+
"loss": 0.4241,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.06775497671562355,
|
2323 |
+
"grad_norm": 0.7236097758888326,
|
2324 |
+
"learning_rate": 1.992566788083908e-06,
|
2325 |
+
"loss": 0.4181,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.06795967453047438,
|
2330 |
+
"grad_norm": 0.8114241422692142,
|
2331 |
+
"learning_rate": 1.992485874360338e-06,
|
2332 |
+
"loss": 0.4383,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.06816437234532521,
|
2337 |
+
"grad_norm": 0.7429107582072085,
|
2338 |
+
"learning_rate": 1.992404524287803e-06,
|
2339 |
+
"loss": 0.4418,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.06836907016017604,
|
2344 |
+
"grad_norm": 0.7664592844718724,
|
2345 |
+
"learning_rate": 1.9923227379020674e-06,
|
2346 |
+
"loss": 0.4424,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.06857376797502687,
|
2351 |
+
"grad_norm": 0.7525421136101852,
|
2352 |
+
"learning_rate": 1.9922405152390893e-06,
|
2353 |
+
"loss": 0.4601,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.06877846578987769,
|
2358 |
+
"grad_norm": 0.7924977816871237,
|
2359 |
+
"learning_rate": 1.9921578563350182e-06,
|
2360 |
+
"loss": 0.4481,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.06898316360472852,
|
2365 |
+
"grad_norm": 0.7205455607720451,
|
2366 |
+
"learning_rate": 1.9920747612261953e-06,
|
2367 |
+
"loss": 0.472,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.06918786141957935,
|
2372 |
+
"grad_norm": 0.8099842191878124,
|
2373 |
+
"learning_rate": 1.9919912299491534e-06,
|
2374 |
+
"loss": 0.4522,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.06939255923443018,
|
2379 |
+
"grad_norm": 0.7601204829884295,
|
2380 |
+
"learning_rate": 1.991907262540617e-06,
|
2381 |
+
"loss": 0.4361,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.069597257049281,
|
2386 |
+
"grad_norm": 0.7498165219729875,
|
2387 |
+
"learning_rate": 1.9918228590375034e-06,
|
2388 |
+
"loss": 0.4363,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.06980195486413182,
|
2393 |
+
"grad_norm": 0.7130352034738562,
|
2394 |
+
"learning_rate": 1.9917380194769197e-06,
|
2395 |
+
"loss": 0.4355,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.07000665267898265,
|
2400 |
+
"grad_norm": 0.7653650161746682,
|
2401 |
+
"learning_rate": 1.991652743896167e-06,
|
2402 |
+
"loss": 0.4062,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.07021135049383348,
|
2407 |
+
"grad_norm": 0.8196206368298663,
|
2408 |
+
"learning_rate": 1.991567032332736e-06,
|
2409 |
+
"loss": 0.4614,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.07041604830868431,
|
2414 |
+
"grad_norm": 0.7812062890731587,
|
2415 |
+
"learning_rate": 1.991480884824311e-06,
|
2416 |
+
"loss": 0.4975,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.07062074612353512,
|
2421 |
+
"grad_norm": 0.7206276352235353,
|
2422 |
+
"learning_rate": 1.9913943014087655e-06,
|
2423 |
+
"loss": 0.4157,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.07082544393838595,
|
2428 |
+
"grad_norm": 0.78698897087266,
|
2429 |
+
"learning_rate": 1.9913072821241672e-06,
|
2430 |
+
"loss": 0.4581,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.07103014175323678,
|
2435 |
+
"grad_norm": 0.7764210083677198,
|
2436 |
+
"learning_rate": 1.991219827008775e-06,
|
2437 |
+
"loss": 0.4408,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.07123483956808761,
|
2442 |
+
"grad_norm": 0.7595433195005857,
|
2443 |
+
"learning_rate": 1.9911319361010367e-06,
|
2444 |
+
"loss": 0.4492,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.07143953738293844,
|
2449 |
+
"grad_norm": 0.722334537399672,
|
2450 |
+
"learning_rate": 1.991043609439596e-06,
|
2451 |
+
"loss": 0.4098,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.07164423519778926,
|
2456 |
+
"grad_norm": 0.7424362807959037,
|
2457 |
+
"learning_rate": 1.9909548470632842e-06,
|
2458 |
+
"loss": 0.4169,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.07184893301264009,
|
2463 |
+
"grad_norm": 0.7665542829825039,
|
2464 |
+
"learning_rate": 1.9908656490111267e-06,
|
2465 |
+
"loss": 0.4635,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.07205363082749092,
|
2470 |
+
"grad_norm": 0.7670493050777013,
|
2471 |
+
"learning_rate": 1.9907760153223396e-06,
|
2472 |
+
"loss": 0.4245,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.07225832864234175,
|
2477 |
+
"grad_norm": 0.7082306081348982,
|
2478 |
+
"learning_rate": 1.9906859460363304e-06,
|
2479 |
+
"loss": 0.3885,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.07246302645719258,
|
2484 |
+
"grad_norm": 0.7179046673862461,
|
2485 |
+
"learning_rate": 1.990595441192699e-06,
|
2486 |
+
"loss": 0.4047,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.07266772427204339,
|
2491 |
+
"grad_norm": 0.7785673633417279,
|
2492 |
+
"learning_rate": 1.990504500831235e-06,
|
2493 |
+
"loss": 0.484,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.07287242208689422,
|
2498 |
+
"grad_norm": 0.7657292926077239,
|
2499 |
+
"learning_rate": 1.9904131249919215e-06,
|
2500 |
+
"loss": 0.4444,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.07307711990174505,
|
2505 |
+
"grad_norm": 0.7569753573050043,
|
2506 |
+
"learning_rate": 1.9903213137149313e-06,
|
2507 |
+
"loss": 0.4701,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.07328181771659588,
|
2512 |
+
"grad_norm": 0.8072244283837906,
|
2513 |
+
"learning_rate": 1.99022906704063e-06,
|
2514 |
+
"loss": 0.4409,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.07348651553144671,
|
2519 |
+
"grad_norm": 0.7629374834771911,
|
2520 |
+
"learning_rate": 1.990136385009574e-06,
|
2521 |
+
"loss": 0.4927,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.07369121334629752,
|
2526 |
+
"grad_norm": 0.7385249798311992,
|
2527 |
+
"learning_rate": 1.990043267662511e-06,
|
2528 |
+
"loss": 0.4338,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.07389591116114835,
|
2533 |
+
"grad_norm": 0.775227359922002,
|
2534 |
+
"learning_rate": 1.989949715040381e-06,
|
2535 |
+
"loss": 0.4789,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.07410060897599918,
|
2540 |
+
"grad_norm": 0.7517526442766227,
|
2541 |
+
"learning_rate": 1.9898557271843133e-06,
|
2542 |
+
"loss": 0.4504,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.07430530679085001,
|
2547 |
+
"grad_norm": 0.7375927174293256,
|
2548 |
+
"learning_rate": 1.9897613041356314e-06,
|
2549 |
+
"loss": 0.4108,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.07451000460570083,
|
2554 |
+
"grad_norm": 0.72174871971371,
|
2555 |
+
"learning_rate": 1.9896664459358472e-06,
|
2556 |
+
"loss": 0.4475,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.07471470242055166,
|
2561 |
+
"grad_norm": 0.7329776456768429,
|
2562 |
+
"learning_rate": 1.9895711526266667e-06,
|
2563 |
+
"loss": 0.424,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.07491940023540249,
|
2568 |
+
"grad_norm": 0.7185696661034995,
|
2569 |
+
"learning_rate": 1.9894754242499852e-06,
|
2570 |
+
"loss": 0.4543,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.07512409805025332,
|
2575 |
+
"grad_norm": 0.7049184644044292,
|
2576 |
+
"learning_rate": 1.98937926084789e-06,
|
2577 |
+
"loss": 0.42,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.07532879586510415,
|
2582 |
+
"grad_norm": 0.7293724081932391,
|
2583 |
+
"learning_rate": 1.989282662462659e-06,
|
2584 |
+
"loss": 0.43,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.07553349367995496,
|
2589 |
+
"grad_norm": 0.7059632003848231,
|
2590 |
+
"learning_rate": 1.9891856291367626e-06,
|
2591 |
+
"loss": 0.4275,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.07573819149480579,
|
2596 |
+
"grad_norm": 0.7683789138077434,
|
2597 |
+
"learning_rate": 1.9890881609128618e-06,
|
2598 |
+
"loss": 0.4408,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.07594288930965662,
|
2603 |
+
"grad_norm": 0.7872951646579199,
|
2604 |
+
"learning_rate": 1.9889902578338087e-06,
|
2605 |
+
"loss": 0.4292,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.07614758712450745,
|
2610 |
+
"grad_norm": 0.7924075912782186,
|
2611 |
+
"learning_rate": 1.988891919942646e-06,
|
2612 |
+
"loss": 0.4408,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.07635228493935828,
|
2617 |
+
"grad_norm": 0.7607074410846072,
|
2618 |
+
"learning_rate": 1.9887931472826093e-06,
|
2619 |
+
"loss": 0.4485,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.0765569827542091,
|
2624 |
+
"grad_norm": 0.7592064137840062,
|
2625 |
+
"learning_rate": 1.9886939398971238e-06,
|
2626 |
+
"loss": 0.4404,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.07676168056905992,
|
2631 |
+
"grad_norm": 0.8183614522835663,
|
2632 |
+
"learning_rate": 1.9885942978298054e-06,
|
2633 |
+
"loss": 0.4677,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.07696637838391075,
|
2638 |
+
"grad_norm": 0.7400985748589023,
|
2639 |
+
"learning_rate": 1.9884942211244637e-06,
|
2640 |
+
"loss": 0.4867,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.07717107619876158,
|
2645 |
+
"grad_norm": 0.7657568826393069,
|
2646 |
+
"learning_rate": 1.988393709825096e-06,
|
2647 |
+
"loss": 0.4592,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.07737577401361241,
|
2652 |
+
"grad_norm": 0.7242932934680155,
|
2653 |
+
"learning_rate": 1.988292763975893e-06,
|
2654 |
+
"loss": 0.4037,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.07758047182846323,
|
2659 |
+
"grad_norm": 0.695616397865644,
|
2660 |
+
"learning_rate": 1.9881913836212365e-06,
|
2661 |
+
"loss": 0.4534,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.07778516964331406,
|
2666 |
+
"grad_norm": 0.7286084983103666,
|
2667 |
+
"learning_rate": 1.9880895688056977e-06,
|
2668 |
+
"loss": 0.4267,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.07798986745816489,
|
2673 |
+
"grad_norm": 0.7434704183939207,
|
2674 |
+
"learning_rate": 1.98798731957404e-06,
|
2675 |
+
"loss": 0.4308,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.07819456527301571,
|
2680 |
+
"grad_norm": 0.7803766550265465,
|
2681 |
+
"learning_rate": 1.9878846359712176e-06,
|
2682 |
+
"loss": 0.4455,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.07839926308786653,
|
2687 |
+
"grad_norm": 0.777748381274515,
|
2688 |
+
"learning_rate": 1.9877815180423757e-06,
|
2689 |
+
"loss": 0.4639,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.07860396090271736,
|
2694 |
+
"grad_norm": 0.724760659067026,
|
2695 |
+
"learning_rate": 1.9876779658328503e-06,
|
2696 |
+
"loss": 0.4666,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.07880865871756819,
|
2701 |
+
"grad_norm": 0.6620651646162441,
|
2702 |
+
"learning_rate": 1.9875739793881685e-06,
|
2703 |
+
"loss": 0.4195,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.07901335653241902,
|
2708 |
+
"grad_norm": 0.7524415209772658,
|
2709 |
+
"learning_rate": 1.9874695587540477e-06,
|
2710 |
+
"loss": 0.4431,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.07921805434726985,
|
2715 |
+
"grad_norm": 0.6797630439484897,
|
2716 |
+
"learning_rate": 1.9873647039763975e-06,
|
2717 |
+
"loss": 0.4453,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.07942275216212066,
|
2722 |
+
"grad_norm": 0.7685812672797145,
|
2723 |
+
"learning_rate": 1.987259415101317e-06,
|
2724 |
+
"loss": 0.4623,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.07962744997697149,
|
2729 |
+
"grad_norm": 0.7581895406953137,
|
2730 |
+
"learning_rate": 1.9871536921750965e-06,
|
2731 |
+
"loss": 0.4423,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.07983214779182232,
|
2736 |
+
"grad_norm": 0.7100776210964536,
|
2737 |
+
"learning_rate": 1.987047535244218e-06,
|
2738 |
+
"loss": 0.4171,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.08003684560667315,
|
2743 |
+
"grad_norm": 0.7299757652818287,
|
2744 |
+
"learning_rate": 1.9869409443553535e-06,
|
2745 |
+
"loss": 0.454,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.08024154342152398,
|
2750 |
+
"grad_norm": 0.7439290629641574,
|
2751 |
+
"learning_rate": 1.9868339195553657e-06,
|
2752 |
+
"loss": 0.4426,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.0804462412363748,
|
2757 |
+
"grad_norm": 0.75716235792549,
|
2758 |
+
"learning_rate": 1.9867264608913084e-06,
|
2759 |
+
"loss": 0.4479,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.08065093905122563,
|
2764 |
+
"grad_norm": 0.6968938261452492,
|
2765 |
+
"learning_rate": 1.9866185684104266e-06,
|
2766 |
+
"loss": 0.4335,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.08085563686607646,
|
2771 |
+
"grad_norm": 0.7170546940871543,
|
2772 |
+
"learning_rate": 1.9865102421601545e-06,
|
2773 |
+
"loss": 0.4286,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.08106033468092728,
|
2778 |
+
"grad_norm": 0.7478223773320385,
|
2779 |
+
"learning_rate": 1.986401482188119e-06,
|
2780 |
+
"loss": 0.4202,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.08126503249577811,
|
2785 |
+
"grad_norm": 0.7076328746009948,
|
2786 |
+
"learning_rate": 1.986292288542136e-06,
|
2787 |
+
"loss": 0.4558,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.08146973031062893,
|
2792 |
+
"grad_norm": 0.7591423650217918,
|
2793 |
+
"learning_rate": 1.986182661270213e-06,
|
2794 |
+
"loss": 0.4674,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.08167442812547976,
|
2799 |
+
"grad_norm": 0.7416281412961139,
|
2800 |
+
"learning_rate": 1.9860726004205485e-06,
|
2801 |
+
"loss": 0.4397,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.08187912594033059,
|
2806 |
+
"grad_norm": 0.7416913042041706,
|
2807 |
+
"learning_rate": 1.98596210604153e-06,
|
2808 |
+
"loss": 0.4405,
|
2809 |
+
"step": 400
|
2810 |
+
}
|
2811 |
+
],
|
2812 |
+
"logging_steps": 1,
|
2813 |
+
"max_steps": 4885,
|
2814 |
+
"num_input_tokens_seen": 0,
|
2815 |
+
"num_train_epochs": 1,
|
2816 |
+
"save_steps": 200,
|
2817 |
+
"stateful_callbacks": {
|
2818 |
+
"TrainerControl": {
|
2819 |
+
"args": {
|
2820 |
+
"should_epoch_stop": false,
|
2821 |
+
"should_evaluate": false,
|
2822 |
+
"should_log": false,
|
2823 |
+
"should_save": true,
|
2824 |
+
"should_training_stop": false
|
2825 |
+
},
|
2826 |
+
"attributes": {}
|
2827 |
+
}
|
2828 |
+
},
|
2829 |
+
"total_flos": 53820235284480.0,
|
2830 |
+
"train_batch_size": 4,
|
2831 |
+
"trial_name": null,
|
2832 |
+
"trial_params": null
|
2833 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:815876fc464af9a5a26a6d1249337452b56c98d7de76faead50ef8193dd9ce4f
|
3 |
+
size 7288
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|