JhonMR commited on
Commit
32cea41
·
verified ·
1 Parent(s): 891394d

End of training

Browse files
Files changed (7) hide show
  1. README.md +45 -179
  2. all_results.json +21 -0
  3. config.json +1 -1
  4. eval_results.json +11 -0
  5. train_results.json +8 -0
  6. trainer_state.json +330 -0
  7. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,65 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: DistriBert_v10-1
14
+ results: []
15
  ---
16
 
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
 
20
+ # DistriBert_v10-1
21
 
22
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Accuracy: 0.9135
25
+ - F1: 0.9115
26
+ - Precision: 0.9122
27
+ - Recall: 0.9128
28
+ - Loss: 0.3513
29
 
30
+ ## Model description
31
 
32
+ More information needed
33
 
34
+ ## Intended uses & limitations
35
 
36
+ More information needed
37
 
38
+ ## Training and evaluation data
39
 
40
+ More information needed
 
 
 
 
 
 
41
 
42
+ ## Training procedure
43
 
44
+ ### Training hyperparameters
45
 
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: cosine_with_restarts
53
+ - lr_scheduler_warmup_steps: 100
54
+ - num_epochs: 20
55
 
56
+ ### Training results
57
 
 
58
 
 
59
 
60
+ ### Framework versions
61
 
62
+ - Transformers 4.44.2
63
+ - Pytorch 2.5.0+cu121
64
+ - Datasets 3.1.0
65
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9134920634920635,
4
+ "eval_f1": 0.9115252835945801,
5
+ "eval_loss": 0.3512510657310486,
6
+ "eval_precision": 0.9122290522908707,
7
+ "eval_recall": 0.9127652441899627,
8
+ "eval_runtime": 61.9253,
9
+ "eval_samples_per_second": 61.041,
10
+ "eval_steps_per_second": 1.922,
11
+ "total_flos": 1.16919589957632e+16,
12
+ "train_eval_accuracy": 0.9672335600907029,
13
+ "train_eval_f1": 0.9673423681503462,
14
+ "train_eval_loss": 0.11652734130620956,
15
+ "train_eval_precision": 0.967673238789642,
16
+ "train_eval_recall": 0.9673335278419569,
17
+ "train_loss": 0.7689362014549366,
18
+ "train_runtime": 6188.3292,
19
+ "train_samples_per_second": 28.505,
20
+ "train_steps_per_second": 0.892
21
+ }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "DistriBert_v10-1",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertForSequenceClassification"
 
1
  {
2
+ "_name_or_path": "distilbert/distilbert-base-uncased",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertForSequenceClassification"
eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9134920634920635,
4
+ "eval_f1": 0.9115252835945801,
5
+ "eval_loss": 0.3512510657310486,
6
+ "eval_precision": 0.9122290522908707,
7
+ "eval_recall": 0.9127652441899627,
8
+ "eval_runtime": 61.9253,
9
+ "eval_samples_per_second": 61.041,
10
+ "eval_steps_per_second": 1.922
11
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.16919589957632e+16,
4
+ "train_loss": 0.7689362014549366,
5
+ "train_runtime": 6188.3292,
6
+ "train_samples_per_second": 28.505,
7
+ "train_steps_per_second": 0.892
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2760,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "step": 276,
14
+ "train_eval_accuracy": 0.4954648526077097,
15
+ "train_eval_f1": 0.424904604475739,
16
+ "train_eval_loss": 2.101224660873413,
17
+ "train_eval_precision": 0.4856527073524001,
18
+ "train_eval_recall": 0.4926378954436191,
19
+ "train_loss": 2.101224660873413,
20
+ "train_runtime": 144.8838,
21
+ "train_samples_per_second": 60.876,
22
+ "train_steps_per_second": 1.905
23
+ },
24
+ {
25
+ "epoch": 1.0,
26
+ "eval_accuracy": 0.4835978835978836,
27
+ "eval_f1": 0.4135688868128075,
28
+ "eval_loss": 2.1065914630889893,
29
+ "eval_precision": 0.4476136879464602,
30
+ "eval_recall": 0.48953657594776134,
31
+ "eval_runtime": 62.0697,
32
+ "eval_samples_per_second": 60.899,
33
+ "eval_steps_per_second": 1.917,
34
+ "step": 276
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "step": 552,
39
+ "train_eval_accuracy": 0.7447845804988662,
40
+ "train_eval_f1": 0.7128821278125044,
41
+ "train_eval_loss": 1.0038776397705078,
42
+ "train_eval_precision": 0.7489107215212647,
43
+ "train_eval_recall": 0.7458421207363585,
44
+ "train_loss": 1.0038776397705078,
45
+ "train_runtime": 145.0361,
46
+ "train_samples_per_second": 60.812,
47
+ "train_steps_per_second": 1.903
48
+ },
49
+ {
50
+ "epoch": 2.0,
51
+ "eval_accuracy": 0.7428571428571429,
52
+ "eval_f1": 0.7089773330055067,
53
+ "eval_loss": 1.0131804943084717,
54
+ "eval_precision": 0.7421511367537219,
55
+ "eval_recall": 0.7406592004709303,
56
+ "eval_runtime": 62.0776,
57
+ "eval_samples_per_second": 60.892,
58
+ "eval_steps_per_second": 1.917,
59
+ "step": 552
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "step": 828,
64
+ "train_eval_accuracy": 0.8630385487528345,
65
+ "train_eval_f1": 0.8603167863727107,
66
+ "train_eval_loss": 0.5634090304374695,
67
+ "train_eval_precision": 0.8737026471608341,
68
+ "train_eval_recall": 0.8625907729727306,
69
+ "train_loss": 0.5634090304374695,
70
+ "train_runtime": 144.9979,
71
+ "train_samples_per_second": 60.828,
72
+ "train_steps_per_second": 1.903
73
+ },
74
+ {
75
+ "epoch": 3.0,
76
+ "eval_accuracy": 0.8481481481481481,
77
+ "eval_f1": 0.8456142462826861,
78
+ "eval_loss": 0.5928145051002502,
79
+ "eval_precision": 0.8571463898409206,
80
+ "eval_recall": 0.8489798133243263,
81
+ "eval_runtime": 62.0895,
82
+ "eval_samples_per_second": 60.88,
83
+ "eval_steps_per_second": 1.917,
84
+ "step": 828
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "step": 1104,
89
+ "train_eval_accuracy": 0.9109977324263039,
90
+ "train_eval_f1": 0.9104882432709309,
91
+ "train_eval_loss": 0.3656206429004669,
92
+ "train_eval_precision": 0.9163348905783797,
93
+ "train_eval_recall": 0.9110465902769607,
94
+ "train_loss": 0.3656206727027893,
95
+ "train_runtime": 144.8557,
96
+ "train_samples_per_second": 60.888,
97
+ "train_steps_per_second": 1.905
98
+ },
99
+ {
100
+ "epoch": 4.0,
101
+ "eval_accuracy": 0.8962962962962963,
102
+ "eval_f1": 0.8935631085204128,
103
+ "eval_loss": 0.4208849370479584,
104
+ "eval_precision": 0.8990702798318864,
105
+ "eval_recall": 0.8957702000784453,
106
+ "eval_runtime": 62.1675,
107
+ "eval_samples_per_second": 60.803,
108
+ "eval_steps_per_second": 1.914,
109
+ "step": 1104
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "step": 1380,
114
+ "train_eval_accuracy": 0.9232426303854875,
115
+ "train_eval_f1": 0.9229682041537378,
116
+ "train_eval_loss": 0.2874959707260132,
117
+ "train_eval_precision": 0.9273281861728557,
118
+ "train_eval_recall": 0.9227952922309719,
119
+ "train_loss": 0.28749600052833557,
120
+ "train_runtime": 145.0525,
121
+ "train_samples_per_second": 60.806,
122
+ "train_steps_per_second": 1.903
123
+ },
124
+ {
125
+ "epoch": 5.0,
126
+ "eval_accuracy": 0.9029100529100529,
127
+ "eval_f1": 0.9011946016504275,
128
+ "eval_loss": 0.37733063101768494,
129
+ "eval_precision": 0.9049954124488648,
130
+ "eval_recall": 0.9036354818715393,
131
+ "eval_runtime": 62.1416,
132
+ "eval_samples_per_second": 60.829,
133
+ "eval_steps_per_second": 1.915,
134
+ "step": 1380
135
+ },
136
+ {
137
+ "epoch": 6.0,
138
+ "step": 1656,
139
+ "train_eval_accuracy": 0.9370748299319728,
140
+ "train_eval_f1": 0.9368912367928741,
141
+ "train_eval_loss": 0.23322050273418427,
142
+ "train_eval_precision": 0.939204184223903,
143
+ "train_eval_recall": 0.937322301823473,
144
+ "train_loss": 0.23322050273418427,
145
+ "train_runtime": 144.9845,
146
+ "train_samples_per_second": 60.834,
147
+ "train_steps_per_second": 1.904
148
+ },
149
+ {
150
+ "epoch": 6.0,
151
+ "eval_accuracy": 0.9105820105820106,
152
+ "eval_f1": 0.908396393828423,
153
+ "eval_loss": 0.3413718342781067,
154
+ "eval_precision": 0.9102975744779533,
155
+ "eval_recall": 0.9096675456615884,
156
+ "eval_runtime": 62.1169,
157
+ "eval_samples_per_second": 60.853,
158
+ "eval_steps_per_second": 1.916,
159
+ "step": 1656
160
+ },
161
+ {
162
+ "epoch": 7.0,
163
+ "step": 1932,
164
+ "train_eval_accuracy": 0.9435374149659864,
165
+ "train_eval_f1": 0.943453224205871,
166
+ "train_eval_loss": 0.20147815346717834,
167
+ "train_eval_precision": 0.9469882171165018,
168
+ "train_eval_recall": 0.9435449695196283,
169
+ "train_loss": 0.20147816836833954,
170
+ "train_runtime": 144.7624,
171
+ "train_samples_per_second": 60.927,
172
+ "train_steps_per_second": 1.907
173
+ },
174
+ {
175
+ "epoch": 7.0,
176
+ "eval_accuracy": 0.9121693121693122,
177
+ "eval_f1": 0.9103139018247439,
178
+ "eval_loss": 0.3457355499267578,
179
+ "eval_precision": 0.9132402827313028,
180
+ "eval_recall": 0.9120503817924005,
181
+ "eval_runtime": 62.1165,
182
+ "eval_samples_per_second": 60.853,
183
+ "eval_steps_per_second": 1.916,
184
+ "step": 1932
185
+ },
186
+ {
187
+ "epoch": 8.0,
188
+ "step": 2208,
189
+ "train_eval_accuracy": 0.9518140589569161,
190
+ "train_eval_f1": 0.9517198736909416,
191
+ "train_eval_loss": 0.1689794510602951,
192
+ "train_eval_precision": 0.9547315428415143,
193
+ "train_eval_recall": 0.9519285064221675,
194
+ "train_loss": 0.16897942125797272,
195
+ "train_runtime": 145.0413,
196
+ "train_samples_per_second": 60.81,
197
+ "train_steps_per_second": 1.903
198
+ },
199
+ {
200
+ "epoch": 8.0,
201
+ "eval_accuracy": 0.9119047619047619,
202
+ "eval_f1": 0.9099505788900774,
203
+ "eval_loss": 0.3478126525878906,
204
+ "eval_precision": 0.9135423252017797,
205
+ "eval_recall": 0.9116997470551864,
206
+ "eval_runtime": 62.1667,
207
+ "eval_samples_per_second": 60.804,
208
+ "eval_steps_per_second": 1.914,
209
+ "step": 2208
210
+ },
211
+ {
212
+ "epoch": 9.0,
213
+ "step": 2484,
214
+ "train_eval_accuracy": 0.9597505668934241,
215
+ "train_eval_f1": 0.9598126383463436,
216
+ "train_eval_loss": 0.13835597038269043,
217
+ "train_eval_precision": 0.9614206068146748,
218
+ "train_eval_recall": 0.9599367994432203,
219
+ "train_loss": 0.13835598528385162,
220
+ "train_runtime": 144.9973,
221
+ "train_samples_per_second": 60.829,
222
+ "train_steps_per_second": 1.903
223
+ },
224
+ {
225
+ "epoch": 9.0,
226
+ "eval_accuracy": 0.9132275132275133,
227
+ "eval_f1": 0.9114074718878633,
228
+ "eval_loss": 0.3454839885234833,
229
+ "eval_precision": 0.9133521030992556,
230
+ "eval_recall": 0.91269076612755,
231
+ "eval_runtime": 62.1786,
232
+ "eval_samples_per_second": 60.793,
233
+ "eval_steps_per_second": 1.914,
234
+ "step": 2484
235
+ },
236
+ {
237
+ "epoch": 10.0,
238
+ "step": 2760,
239
+ "train_eval_accuracy": 0.9672335600907029,
240
+ "train_eval_f1": 0.9673423681503462,
241
+ "train_eval_loss": 0.11652734130620956,
242
+ "train_eval_precision": 0.967673238789642,
243
+ "train_eval_recall": 0.9673335278419569,
244
+ "train_loss": 0.11652734875679016,
245
+ "train_runtime": 145.0683,
246
+ "train_samples_per_second": 60.799,
247
+ "train_steps_per_second": 1.903
248
+ },
249
+ {
250
+ "epoch": 10.0,
251
+ "eval_accuracy": 0.9134920634920635,
252
+ "eval_f1": 0.9115252835945801,
253
+ "eval_loss": 0.3512510657310486,
254
+ "eval_precision": 0.9122290522908707,
255
+ "eval_recall": 0.9127652441899627,
256
+ "eval_runtime": 62.1606,
257
+ "eval_samples_per_second": 60.81,
258
+ "eval_steps_per_second": 1.914,
259
+ "step": 2760
260
+ },
261
+ {
262
+ "epoch": 10.0,
263
+ "step": 2760,
264
+ "total_flos": 1.16919589957632e+16,
265
+ "train_loss": 0.7689362014549366,
266
+ "train_runtime": 6188.3292,
267
+ "train_samples_per_second": 28.505,
268
+ "train_steps_per_second": 0.892
269
+ },
270
+ {
271
+ "epoch": 10.0,
272
+ "eval_accuracy": 0.9134920634920635,
273
+ "eval_f1": 0.9115252835945801,
274
+ "eval_loss": 0.3512510657310486,
275
+ "eval_precision": 0.9122290522908707,
276
+ "eval_recall": 0.9127652441899627,
277
+ "eval_runtime": 62.1566,
278
+ "eval_samples_per_second": 60.814,
279
+ "eval_steps_per_second": 1.915,
280
+ "step": 2760
281
+ },
282
+ {
283
+ "epoch": 10.0,
284
+ "step": 2760,
285
+ "train_en_eval_accuracy": 0.9672335600907029,
286
+ "train_en_eval_f1": 0.9673423681503462,
287
+ "train_en_eval_loss": 0.11652734130620956,
288
+ "train_en_eval_precision": 0.967673238789642,
289
+ "train_en_eval_recall": 0.9673335278419569,
290
+ "train_en_loss": 0.11652734875679016,
291
+ "train_en_runtime": 145.0476,
292
+ "train_en_samples_per_second": 60.808,
293
+ "train_en_steps_per_second": 1.903
294
+ },
295
+ {
296
+ "epoch": 10.0,
297
+ "step": 2760,
298
+ "test_en_eval_accuracy": 0.9134920634920635,
299
+ "test_en_eval_f1": 0.9115252835945801,
300
+ "test_en_eval_loss": 0.3512510657310486,
301
+ "test_en_eval_precision": 0.9122290522908707,
302
+ "test_en_eval_recall": 0.9127652441899627,
303
+ "test_en_loss": 0.3512510657310486,
304
+ "test_en_runtime": 62.1457,
305
+ "test_en_samples_per_second": 60.825,
306
+ "test_en_steps_per_second": 1.915
307
+ }
308
+ ],
309
+ "logging_steps": 500,
310
+ "max_steps": 5520,
311
+ "num_input_tokens_seen": 0,
312
+ "num_train_epochs": 20,
313
+ "save_steps": 500,
314
+ "stateful_callbacks": {
315
+ "TrainerControl": {
316
+ "args": {
317
+ "should_epoch_stop": false,
318
+ "should_evaluate": false,
319
+ "should_log": false,
320
+ "should_save": true,
321
+ "should_training_stop": true
322
+ },
323
+ "attributes": {}
324
+ }
325
+ },
326
+ "total_flos": 1.16919589957632e+16,
327
+ "train_batch_size": 32,
328
+ "trial_name": null,
329
+ "trial_params": null
330
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb42ec07bcecc4b0588222416d41db3233f3b190bcd4fad447cda42b4a96fd0
3
+ size 5176