--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: task1_xlnet-base-cased_3_4_2e-05_0.01 results: [] --- # task1_xlnet-base-cased_3_4_2e-05_0.01 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3630 - Accuracy: 0.9447 - F1: 0.8571 - Precision: 0.8219 - Recall: 0.8955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3153 | 1.0 | 1629 | 0.2537 | 0.9336 | 0.8356 | 0.7722 | 0.9104 | | 0.1964 | 2.0 | 3258 | 0.3178 | 0.9392 | 0.8413 | 0.8140 | 0.8706 | | 0.0756 | 3.0 | 4887 | 0.3630 | 0.9447 | 0.8571 | 0.8219 | 0.8955 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3