--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bert-large-e2-version2-noweight results: [] --- # bert-large-e2-version2-noweight This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5193 - Accuracy: 0.9336 - F1: 0.8269 - Precision: 0.8039 - Recall: 0.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0645 | 1.0 | 4089 | 0.8181 | 0.8762 | 0.7398 | 0.6080 | 0.9446 | | 0.0123 | 2.0 | 8178 | 0.5193 | 0.9336 | 0.8269 | 0.8039 | 0.8512 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3