--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.7581227436823105 --- # roberta-base-rte This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2942 - Accuracy: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7072 | 0.4729 | | No log | 2.0 | 312 | 0.6958 | 0.5271 | | No log | 3.0 | 468 | 0.6193 | 0.6462 | | 0.6759 | 4.0 | 624 | 0.6046 | 0.7076 | | 0.6759 | 5.0 | 780 | 0.6365 | 0.7581 | | 0.6759 | 6.0 | 936 | 0.8975 | 0.7545 | | 0.3194 | 7.0 | 1092 | 1.2031 | 0.7581 | | 0.3194 | 8.0 | 1248 | 1.2942 | 0.7581 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1