Jenthe commited on
Commit
dd3c421
·
1 Parent(s): 06a698d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -48,8 +48,7 @@ import torchaudio
48
  ecapa2_model = torch.jit.load(model_file, map_location='cpu')
49
  audio, sr = torchaudio.load('sample.wav') # sample rate of 16 kHz expected
50
 
51
- with torch.no_grad():
52
- embedding = ecapa2_model(audio)
53
  ```
54
 
55
  For faster, 16-bit half-precision CUDA inference (recommended):
@@ -62,10 +61,11 @@ ecapa2_model = torch.jit.load(model_file, map_location='cuda')
62
  ecapa2_model.half() # optional, but results in faster inference
63
  audio, sr = torchaudio.load('sample.wav') # sample rate of 16 kHz expected
64
 
65
- with torch.no_grad():
66
- embedding = ecapa2_model(audio)
67
  ```
68
 
 
 
69
  ### Hierarchical Feature Extraction
70
 
71
  For the extraction of other hierachical features, the `label` argument can be used, which accepts a string containing the feature ids separated with '|':
 
48
  ecapa2_model = torch.jit.load(model_file, map_location='cpu')
49
  audio, sr = torchaudio.load('sample.wav') # sample rate of 16 kHz expected
50
 
51
+ embedding = ecapa2_model(audio)
 
52
  ```
53
 
54
  For faster, 16-bit half-precision CUDA inference (recommended):
 
61
  ecapa2_model.half() # optional, but results in faster inference
62
  audio, sr = torchaudio.load('sample.wav') # sample rate of 16 kHz expected
63
 
64
+ embedding = ecapa2_model(audio)
 
65
  ```
66
 
67
+ There is no need for explicitly setting `eval` model and disabling gradient calculations. This is done automatically.
68
+
69
  ### Hierarchical Feature Extraction
70
 
71
  For the extraction of other hierachical features, the `label` argument can be used, which accepts a string containing the feature ids separated with '|':