Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- Javiai/failures-3D-print
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
pipeline_tag: object-detection
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
#3D Failures detection model based on Yolov5
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
## How to use
|
| 14 |
+
|
| 15 |
+
### Download the model
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
repo_id = "Javiai/3dprintfails-yolo5vs"
|
| 22 |
+
filenam = "model_torch.pt"
|
| 23 |
+
|
| 24 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
### Combine with the original model
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = False)
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### Prepare an image
|
| 34 |
+
|
| 35 |
+
#### From the original dataset
|
| 36 |
+
```python
|
| 37 |
+
|
| 38 |
+
from datasets import load_dataset
|
| 39 |
+
|
| 40 |
+
dataset = load_dataset('Javiai/failures-3D-print')
|
| 41 |
+
|
| 42 |
+
image = dataset["train"][0]["image"]
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
#### From local
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
|
| 49 |
+
from PIL import Image
|
| 50 |
+
|
| 51 |
+
image = Image.load("path/to/image")
|
| 52 |
+
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
### Inference and show the detection
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
|
| 59 |
+
from PIL import ImageDraw
|
| 60 |
+
|
| 61 |
+
draw = ImageDraw.Draw(image)
|
| 62 |
+
|
| 63 |
+
detections = model(image)
|
| 64 |
+
|
| 65 |
+
categories = [
|
| 66 |
+
{'name': 'error', 'color': (0,0,255)},
|
| 67 |
+
{'name': 'extrusor', 'color': (0,255,0)},
|
| 68 |
+
{'name': 'part', 'color': (255,0,0)},
|
| 69 |
+
{'name': 'spaghetti', 'color': (0,0,255)}
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
for detection in detections.xyxy[0]:
|
| 73 |
+
x1, y1, x2, y2, p, category_id = detection
|
| 74 |
+
x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id)
|
| 75 |
+
draw.rectangle((x1, y1, x2, y2),
|
| 76 |
+
outline=categories[category_id]['color'],
|
| 77 |
+
width=1)
|
| 78 |
+
draw.text((x1, y1), categories[category_id]['name'],
|
| 79 |
+
categories[category_id]['color'])
|
| 80 |
+
|
| 81 |
+
image
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|