---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Walmart Connect provides house advertising offerings.
sentences:
- What was the fair value per performance-based share granted for the fiscal years
2023, 2022, and 2021?
- What services does Walmart Connect offer?
- By how much did membership fees increase in 2023?
- source_sentence: The total revenue for 2023 was reported as $371,620 million.
sentences:
- What was the percentage increase in Humalog revenue from 2022 to 2023?
- What was the total revenue for the year 2023?
- What were the primary factors influencing profitability in the automotive market
in 2023?
- source_sentence: •LinkedIn revenue increased 10%.
sentences:
- By what percentage did LinkedIn's revenue increase in fiscal year 2023?
- What factors influence the recording of the Company's credit-related contingent
features in financial statements?
- What is the average tenure of associates at the company as of December 31, 2023?
- source_sentence: Cash flows from operating activities in 2023 were primarily generated
from management and franchise fee revenue and operating income from owned and
leased hotels.
sentences:
- What is the significance of the Company’s trademarks to their businesses?
- By what percentage did the S&P 500 Index increase in 2023 compared to the end
of 2022?
- What were the primary sources of operating activities cash flow in 2023?
- source_sentence: The par call date for the 7% Notes due 2029 is August 15, 2025,
allowing for redemption at par from this date onward.
sentences:
- What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?
- What are some of the initiatives managed by Visa for supporting underrepresented
communities?
- Who are the competitors for Microsoft's server applications in PC-based environments?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8042383857063928
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7708656462585032
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7746128511093645
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6985714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6985714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6985714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8075815858913178
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7741315192743762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7776656953157759
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17199999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8048199967282856
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7720073696145123
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.775510167698765
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7867880427582347
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7511031746031744
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7551868866444579
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.65
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7914285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8785714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.65
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26380952380952377
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16771428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08785714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.65
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7914285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8785714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7645553995345995
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.727849206349206
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.73258711812532
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Jaswanth160/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The par call date for the 7% Notes due 2029 is August 15, 2025, allowing for redemption at par from this date onward.',
'What is the earliest date on which the 7% Notes due 2029 can be redeemed at par?',
'What are some of the initiatives managed by Visa for supporting underrepresented communities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6943 |
| cosine_accuracy@3 | 0.8314 |
| cosine_accuracy@5 | 0.8729 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.6943 |
| cosine_precision@3 | 0.2771 |
| cosine_precision@5 | 0.1746 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.6943 |
| cosine_recall@3 | 0.8314 |
| cosine_recall@5 | 0.8729 |
| cosine_recall@10 | 0.9071 |
| cosine_ndcg@10 | 0.8042 |
| cosine_mrr@10 | 0.7709 |
| **cosine_map@100** | **0.7746** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6986 |
| cosine_accuracy@3 | 0.8371 |
| cosine_accuracy@5 | 0.87 |
| cosine_accuracy@10 | 0.9114 |
| cosine_precision@1 | 0.6986 |
| cosine_precision@3 | 0.279 |
| cosine_precision@5 | 0.174 |
| cosine_precision@10 | 0.0911 |
| cosine_recall@1 | 0.6986 |
| cosine_recall@3 | 0.8371 |
| cosine_recall@5 | 0.87 |
| cosine_recall@10 | 0.9114 |
| cosine_ndcg@10 | 0.8076 |
| cosine_mrr@10 | 0.7741 |
| **cosine_map@100** | **0.7777** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.86 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.7 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.172 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.7 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.86 |
| cosine_recall@10 | 0.9071 |
| cosine_ndcg@10 | 0.8048 |
| cosine_mrr@10 | 0.772 |
| **cosine_map@100** | **0.7755** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.67 |
| cosine_accuracy@3 | 0.8186 |
| cosine_accuracy@5 | 0.8571 |
| cosine_accuracy@10 | 0.8971 |
| cosine_precision@1 | 0.67 |
| cosine_precision@3 | 0.2729 |
| cosine_precision@5 | 0.1714 |
| cosine_precision@10 | 0.0897 |
| cosine_recall@1 | 0.67 |
| cosine_recall@3 | 0.8186 |
| cosine_recall@5 | 0.8571 |
| cosine_recall@10 | 0.8971 |
| cosine_ndcg@10 | 0.7868 |
| cosine_mrr@10 | 0.7511 |
| **cosine_map@100** | **0.7552** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.65 |
| cosine_accuracy@3 | 0.7914 |
| cosine_accuracy@5 | 0.8386 |
| cosine_accuracy@10 | 0.8786 |
| cosine_precision@1 | 0.65 |
| cosine_precision@3 | 0.2638 |
| cosine_precision@5 | 0.1677 |
| cosine_precision@10 | 0.0879 |
| cosine_recall@1 | 0.65 |
| cosine_recall@3 | 0.7914 |
| cosine_recall@5 | 0.8386 |
| cosine_recall@10 | 0.8786 |
| cosine_ndcg@10 | 0.7646 |
| cosine_mrr@10 | 0.7278 |
| **cosine_map@100** | **0.7326** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
For some of our medical membership, we share risk with providers under capitation contracts where physicians and hospitals accept varying levels of financial risk for a defined set of membership, primarily HMO membership.
| What is the primary type of membership for which risk is shared with providers under capitation contracts?
|
| Revenue for Comcast's Theme Parks segment is primarily derived from guest spending at the theme parks, including ticket sales and in-park spending on food, beverages, and merchandise.
| What is the primary revenue source for Comcast's Theme Parks segment?
|
| In August 2022, the Board of Directors authorized a program to repurchase up to $10.0 billion of the Company’s common stock, referred to as the "Share Repurchase Program". In February 2023, the Board of Directors authorized an additional $10.0 billion in repurchases under the Share Repurchase Program, bringing the aggregate total authorized to $20.0 billion.
| What was the total authorization amount for the Share Repurchase Program of the Company as of February 2023?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters