|
|
|
|
|
|
|
|
|
|
|
|
|
import tqdm |
|
import torch |
|
from mini_dust3r.utils.device import to_cpu, collate_with_cat |
|
from mini_dust3r.utils.misc import invalid_to_nans |
|
from mini_dust3r.utils.geometry import depthmap_to_pts3d, geotrf |
|
from mini_dust3r.utils.image import ImageDict |
|
from mini_dust3r.model import AsymmetricCroCo3DStereo |
|
|
|
from typing import Literal, TypedDict, Optional |
|
from jaxtyping import Float32 |
|
|
|
|
|
class Dust3rPred1(TypedDict): |
|
pts3d: Float32[torch.Tensor, "b h w c"] |
|
conf: Float32[torch.Tensor, "b h w"] |
|
|
|
|
|
class Dust3rPred2(TypedDict): |
|
pts3d_in_other_view: Float32[torch.Tensor, "b h w c"] |
|
conf: Float32[torch.Tensor, "b h w"] |
|
|
|
|
|
class Dust3rResult(TypedDict): |
|
view1: ImageDict |
|
view2: ImageDict |
|
pred1: Dust3rPred1 |
|
pred2: Dust3rPred2 |
|
loss: Optional[int] |
|
|
|
|
|
def _interleave_imgs(img1, img2): |
|
res = {} |
|
for key, value1 in img1.items(): |
|
value2 = img2[key] |
|
if isinstance(value1, torch.Tensor): |
|
value = torch.stack((value1, value2), dim=1).flatten(0, 1) |
|
else: |
|
value = [x for pair in zip(value1, value2) for x in pair] |
|
res[key] = value |
|
return res |
|
|
|
|
|
def make_batch_symmetric(batch): |
|
view1, view2 = batch |
|
view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1)) |
|
return view1, view2 |
|
|
|
|
|
def loss_of_one_batch( |
|
batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None |
|
): |
|
view1, view2 = batch |
|
for view in batch: |
|
for name in ( |
|
"img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres".split() |
|
): |
|
if name not in view: |
|
continue |
|
view[name] = view[name].to(device, non_blocking=True) |
|
|
|
if symmetrize_batch: |
|
view1, view2 = make_batch_symmetric(batch) |
|
|
|
with torch.cuda.amp.autocast(enabled=bool(use_amp)): |
|
pred1, pred2 = model(view1, view2) |
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
loss = ( |
|
criterion(view1, view2, pred1, pred2) if criterion is not None else None |
|
) |
|
|
|
result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) |
|
return result[ret] if ret else result |
|
|
|
|
|
@torch.no_grad() |
|
def inference( |
|
pairs: list[tuple[ImageDict, ImageDict]], |
|
model: AsymmetricCroCo3DStereo, |
|
device: Literal["cpu", "cuda", "mps"], |
|
batch_size: int = 8, |
|
verbose: bool = True, |
|
) -> Dust3rResult: |
|
if verbose: |
|
print(f">> Inference with model on {len(pairs)} image pairs") |
|
result = [] |
|
|
|
|
|
multiple_shapes = not (check_if_same_size(pairs)) |
|
if multiple_shapes: |
|
batch_size = 1 |
|
|
|
for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose): |
|
res: Dust3rResult = loss_of_one_batch( |
|
collate_with_cat(pairs[i : i + batch_size]), model, None, device |
|
) |
|
result.append(to_cpu(res)) |
|
|
|
result = collate_with_cat(result, lists=multiple_shapes) |
|
|
|
return result |
|
|
|
|
|
def check_if_same_size(pairs): |
|
shapes1 = [img1["img"].shape[-2:] for img1, img2 in pairs] |
|
shapes2 = [img2["img"].shape[-2:] for img1, img2 in pairs] |
|
return all(shapes1[0] == s for s in shapes1) and all( |
|
shapes2[0] == s for s in shapes2 |
|
) |
|
|
|
|
|
def get_pred_pts3d(gt, pred, use_pose=False): |
|
if "depth" in pred and "pseudo_focal" in pred: |
|
try: |
|
pp = gt["camera_intrinsics"][..., :2, 2] |
|
except KeyError: |
|
pp = None |
|
pts3d = depthmap_to_pts3d(**pred, pp=pp) |
|
|
|
elif "pts3d" in pred: |
|
|
|
pts3d = pred["pts3d"] |
|
|
|
elif "pts3d_in_other_view" in pred: |
|
|
|
assert use_pose is True |
|
return pred["pts3d_in_other_view"] |
|
|
|
if use_pose: |
|
camera_pose = pred.get("camera_pose") |
|
assert camera_pose is not None |
|
pts3d = geotrf(camera_pose, pts3d) |
|
|
|
return pts3d |
|
|
|
|
|
def find_opt_scaling( |
|
gt_pts1, |
|
gt_pts2, |
|
pr_pts1, |
|
pr_pts2=None, |
|
fit_mode="weiszfeld_stop_grad", |
|
valid1=None, |
|
valid2=None, |
|
): |
|
assert gt_pts1.ndim == pr_pts1.ndim == 4 |
|
assert gt_pts1.shape == pr_pts1.shape |
|
if gt_pts2 is not None: |
|
assert gt_pts2.ndim == pr_pts2.ndim == 4 |
|
assert gt_pts2.shape == pr_pts2.shape |
|
|
|
|
|
nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2) |
|
nan_gt_pts2 = ( |
|
invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None |
|
) |
|
|
|
pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2) |
|
pr_pts2 = ( |
|
invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None |
|
) |
|
|
|
all_gt = ( |
|
torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) |
|
if gt_pts2 is not None |
|
else nan_gt_pts1 |
|
) |
|
all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1 |
|
|
|
dot_gt_pr = (all_pr * all_gt).sum(dim=-1) |
|
dot_gt_gt = all_gt.square().sum(dim=-1) |
|
|
|
if fit_mode.startswith("avg"): |
|
|
|
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) |
|
elif fit_mode.startswith("median"): |
|
scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values |
|
elif fit_mode.startswith("weiszfeld"): |
|
|
|
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) |
|
|
|
for iter in range(10): |
|
|
|
dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1) |
|
|
|
w = dis.clip_(min=1e-8).reciprocal() |
|
|
|
scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1) |
|
else: |
|
raise ValueError(f"bad {fit_mode=}") |
|
|
|
if fit_mode.endswith("stop_grad"): |
|
scaling = scaling.detach() |
|
|
|
scaling = scaling.clip(min=1e-3) |
|
|
|
return scaling |