--- library_name: transformers language: - en license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/voxconverse model-index: - name: JSWOOK/pyannote_2_finetuning results: [] --- # JSWOOK/pyannote_2_finetuning This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/voxconverse dataset. It achieves the following results on the evaluation set: - Loss: 0.1327 - Model Preparation Time: 0.004 - Der: 0.0499 - False Alarm: 0.0304 - Missed Detection: 0.0094 - Confusion: 0.0101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | No log | 1.0 | 21 | 0.1258 | 0.004 | 0.0486 | 0.0289 | 0.0104 | 0.0093 | | 0.2277 | 2.0 | 42 | 0.1355 | 0.004 | 0.0509 | 0.0300 | 0.0097 | 0.0112 | | 0.1872 | 3.0 | 63 | 0.1327 | 0.004 | 0.0494 | 0.0304 | 0.0095 | 0.0095 | | 0.1649 | 4.0 | 84 | 0.1313 | 0.004 | 0.0492 | 0.0303 | 0.0094 | 0.0095 | | 0.1535 | 5.0 | 105 | 0.1327 | 0.004 | 0.0499 | 0.0304 | 0.0094 | 0.0101 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1