--- language: - en license: mit base_model: microsoft/speecht5_tts tags: - . - generated_from_trainer datasets: - speecht5_imda_nsc_p1_p3 model-index: - name: Speech T5 TTS English results: [] --- # Speech T5 TTS English This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the IMDA National Speech Corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.5098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9797 | 0.15 | 1000 | 0.7896 | | 0.8628 | 0.3 | 2000 | 0.7427 | | 0.8362 | 0.45 | 3000 | 0.7141 | | 0.8327 | 0.6 | 4000 | 0.7071 | | 0.8096 | 0.75 | 5000 | 0.7001 | | 0.8085 | 0.89 | 6000 | 0.6922 | | 0.8025 | 1.04 | 7000 | 0.6826 | | 0.7962 | 1.19 | 8000 | 0.6762 | | 0.7441 | 1.34 | 9000 | 0.6396 | | 0.7332 | 1.49 | 10000 | 0.6278 | | 0.7298 | 1.64 | 11000 | 0.6202 | | 0.7208 | 1.79 | 12000 | 0.6103 | | 0.7021 | 1.94 | 13000 | 0.6055 | | 0.6951 | 2.09 | 14000 | 0.6022 | | 0.7017 | 2.24 | 15000 | 0.6003 | | 0.694 | 2.39 | 16000 | 0.5946 | | 0.6757 | 2.54 | 17000 | 0.5842 | | 0.6796 | 2.68 | 18000 | 0.5866 | | 0.6724 | 2.83 | 19000 | 0.5829 | | 0.6691 | 2.98 | 20000 | 0.5757 | | 0.6617 | 3.13 | 21000 | 0.5698 | | 0.6702 | 3.28 | 22000 | 0.5682 | | 0.6623 | 3.43 | 23000 | 0.5658 | | 0.6499 | 3.58 | 24000 | 0.5616 | | 0.6545 | 3.73 | 25000 | 0.5573 | | 0.6491 | 3.88 | 26000 | 0.5516 | | 0.6398 | 4.03 | 27000 | 0.5509 | | 0.6311 | 4.18 | 28000 | 0.5468 | | 0.637 | 4.32 | 29000 | 0.5427 | | 0.6271 | 4.47 | 30000 | 0.5385 | | 0.6273 | 4.62 | 31000 | 0.5358 | | 0.6132 | 4.77 | 32000 | 0.5321 | | 0.6186 | 4.92 | 33000 | 0.5323 | | 0.6157 | 5.07 | 34000 | 0.5320 | | 0.6133 | 5.22 | 35000 | 0.5376 | | 0.6088 | 5.37 | 36000 | 0.5228 | | 0.6129 | 5.52 | 37000 | 0.5248 | | 0.609 | 5.67 | 38000 | 0.5206 | | 0.6042 | 5.82 | 39000 | 0.5197 | | 0.6074 | 5.96 | 40000 | 0.5264 | | 0.6029 | 6.11 | 41000 | 0.5267 | | 0.6001 | 6.26 | 42000 | 0.5163 | | 0.5999 | 6.41 | 43000 | 0.5177 | | 0.5994 | 6.56 | 44000 | 0.5150 | | 0.5982 | 6.71 | 45000 | 0.5141 | | 0.605 | 6.86 | 46000 | 0.5146 | | 0.5939 | 7.01 | 47000 | 0.5144 | | 0.5934 | 7.16 | 48000 | 0.5129 | | 0.5982 | 7.31 | 49000 | 0.5128 | | 0.5925 | 7.46 | 50000 | 0.5088 | | 0.5933 | 7.61 | 51000 | 0.5117 | | 0.5861 | 7.75 | 52000 | 0.5098 | | 0.5931 | 7.9 | 53000 | 0.5121 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2