--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-large-en-v1.5 tags: - generated_from_trainer metrics: - f1 model-index: - name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-47 results: [] --- # gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-47 This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1953 - F1: 0.9364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4457 | 0.2527 | 100 | 0.2245 | 0.9043 | | 0.2007 | 0.5054 | 200 | 0.1694 | 0.9379 | | 0.1703 | 0.7581 | 300 | 0.1438 | 0.9499 | | 0.1545 | 1.0107 | 400 | 0.1219 | 0.9546 | | 0.1136 | 1.2634 | 500 | 0.1342 | 0.9517 | | 0.1126 | 1.5161 | 600 | 0.1351 | 0.9532 | | 0.1213 | 1.7688 | 700 | 0.1521 | 0.9498 | | 0.1163 | 2.0215 | 800 | 0.1389 | 0.9560 | | 0.0783 | 2.2742 | 900 | 0.1614 | 0.9502 | | 0.095 | 2.5268 | 1000 | 0.1486 | 0.9452 | | 0.1057 | 2.7795 | 1100 | 0.1298 | 0.9598 | | 0.1091 | 3.0322 | 1200 | 0.2374 | 0.9442 | | 0.0796 | 3.2849 | 1300 | 0.1545 | 0.9469 | | 0.0921 | 3.5376 | 1400 | 0.1869 | 0.9274 | | 0.1033 | 3.7903 | 1500 | 0.1674 | 0.9425 | | 0.1051 | 4.0430 | 1600 | 0.1710 | 0.9406 | | 0.0772 | 4.2956 | 1700 | 0.1968 | 0.9370 | | 0.0889 | 4.5483 | 1800 | 0.1904 | 0.9387 | | 0.1065 | 4.8010 | 1900 | 0.2306 | 0.9281 | | 0.0915 | 5.0537 | 2000 | 0.1637 | 0.9409 | | 0.0701 | 5.3064 | 2100 | 0.1953 | 0.9364 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3