--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 base_model: bert-base-uncased model-index: - name: bert-base-uncased_title_fine_tuned results: [] --- # bert-base-uncased_title_fine_tuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3368 - Accuracy: {'accuracy': 0.8810840405146455} - Recall: {'recall': 0.8611674554879423} - Precision: {'precision': 0.890468422279189} - F1: {'f1': 0.8755728689275893} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:| | 0.3224 | 1.0 | 3045 | 0.3079 | {'accuracy': 0.8730358609362168} | {'recall': 0.8139508677034032} | {'precision': 0.915346597389431} | {'f1': 0.861676110945422} | | 0.2818 | 2.0 | 6090 | 0.3153 | {'accuracy': 0.8814672871612373} | {'recall': 0.8299526707234618} | {'precision': 0.9182146864480738} | {'f1': 0.8718555785735426} | | 0.2394 | 3.0 | 9135 | 0.3104 | {'accuracy': 0.8830002737476047} | {'recall': 0.8548568852828488} | {'precision': 0.8993479549496147} | {'f1': 0.8765382171124848} | | 0.204 | 4.0 | 12180 | 0.3368 | {'accuracy': 0.8810840405146455} | {'recall': 0.8611674554879423} | {'precision': 0.890468422279189} | {'f1': 0.8755728689275893} | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1