--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-finetune-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR-pretrain results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.731807031888798 - name: Precision type: precision value: 0.7396688030441013 - name: Recall type: recall value: 0.731807031888798 - name: F1 type: f1 value: 0.7202010202484644 --- # vit-finetune-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR-pretrain This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8241 - Accuracy: 0.7318 - Precision: 0.7397 - Recall: 0.7318 - F1: 0.7202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.189 | 0.6667 | 100 | 0.8241 | 0.7318 | 0.7397 | 0.7318 | 0.7202 | | 0.0343 | 1.3333 | 200 | 1.1125 | 0.7269 | 0.8038 | 0.7269 | 0.7294 | | 0.0214 | 2.0 | 300 | 0.9077 | 0.7645 | 0.7745 | 0.7645 | 0.7681 | | 0.0684 | 2.6667 | 400 | 1.3120 | 0.7498 | 0.7677 | 0.7498 | 0.7542 | | 0.0543 | 3.3333 | 500 | 1.4106 | 0.7212 | 0.7429 | 0.7212 | 0.7291 | | 0.0367 | 4.0 | 600 | 0.9240 | 0.7850 | 0.8052 | 0.7850 | 0.7868 | | 0.0028 | 4.6667 | 700 | 0.9933 | 0.8013 | 0.8130 | 0.8013 | 0.8037 | | 0.0023 | 5.3333 | 800 | 1.1196 | 0.7964 | 0.8140 | 0.7964 | 0.8023 | | 0.0279 | 6.0 | 900 | 1.1338 | 0.7825 | 0.8063 | 0.7825 | 0.7742 | | 0.0351 | 6.6667 | 1000 | 1.2453 | 0.8046 | 0.8289 | 0.8046 | 0.7990 | | 0.0015 | 7.3333 | 1100 | 1.4902 | 0.7833 | 0.8110 | 0.7833 | 0.7821 | | 0.0012 | 8.0 | 1200 | 1.5158 | 0.7817 | 0.8050 | 0.7817 | 0.7801 | | 0.001 | 8.6667 | 1300 | 1.5461 | 0.7776 | 0.7989 | 0.7776 | 0.7765 | | 0.0009 | 9.3333 | 1400 | 1.5691 | 0.7735 | 0.7930 | 0.7735 | 0.7728 | | 0.0009 | 10.0 | 1500 | 1.5899 | 0.7743 | 0.7935 | 0.7743 | 0.7735 | | 0.0008 | 10.6667 | 1600 | 1.6074 | 0.7735 | 0.7927 | 0.7735 | 0.7731 | | 0.0007 | 11.3333 | 1700 | 1.6235 | 0.7735 | 0.7927 | 0.7735 | 0.7731 | | 0.0007 | 12.0 | 1800 | 1.6367 | 0.7727 | 0.7914 | 0.7727 | 0.7723 | | 0.0007 | 12.6667 | 1900 | 1.6468 | 0.7735 | 0.7919 | 0.7735 | 0.7730 | | 0.0006 | 13.3333 | 2000 | 1.6551 | 0.7735 | 0.7909 | 0.7735 | 0.7729 | | 0.0006 | 14.0 | 2100 | 1.6609 | 0.7727 | 0.7896 | 0.7727 | 0.7721 | | 0.0006 | 14.6667 | 2200 | 1.6637 | 0.7727 | 0.7896 | 0.7727 | 0.7721 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0