File size: 4,407 Bytes
ead12f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---

library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-finetune-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR-pretrain
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.731807031888798
    - name: Precision
      type: precision
      value: 0.7396688030441013
    - name: Recall
      type: recall
      value: 0.731807031888798
    - name: F1
      type: f1
      value: 0.7202010202484644
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-finetune-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR-pretrain



This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 0.8241

- Accuracy: 0.7318

- Precision: 0.7397

- Recall: 0.7318

- F1: 0.7202



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Accuracy | Precision | Recall | F1     |

|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|

| 0.189         | 0.6667  | 100  | 0.8241          | 0.7318   | 0.7397    | 0.7318 | 0.7202 |

| 0.0343        | 1.3333  | 200  | 1.1125          | 0.7269   | 0.8038    | 0.7269 | 0.7294 |

| 0.0214        | 2.0     | 300  | 0.9077          | 0.7645   | 0.7745    | 0.7645 | 0.7681 |

| 0.0684        | 2.6667  | 400  | 1.3120          | 0.7498   | 0.7677    | 0.7498 | 0.7542 |

| 0.0543        | 3.3333  | 500  | 1.4106          | 0.7212   | 0.7429    | 0.7212 | 0.7291 |

| 0.0367        | 4.0     | 600  | 0.9240          | 0.7850   | 0.8052    | 0.7850 | 0.7868 |

| 0.0028        | 4.6667  | 700  | 0.9933          | 0.8013   | 0.8130    | 0.8013 | 0.8037 |

| 0.0023        | 5.3333  | 800  | 1.1196          | 0.7964   | 0.8140    | 0.7964 | 0.8023 |

| 0.0279        | 6.0     | 900  | 1.1338          | 0.7825   | 0.8063    | 0.7825 | 0.7742 |

| 0.0351        | 6.6667  | 1000 | 1.2453          | 0.8046   | 0.8289    | 0.8046 | 0.7990 |

| 0.0015        | 7.3333  | 1100 | 1.4902          | 0.7833   | 0.8110    | 0.7833 | 0.7821 |

| 0.0012        | 8.0     | 1200 | 1.5158          | 0.7817   | 0.8050    | 0.7817 | 0.7801 |

| 0.001         | 8.6667  | 1300 | 1.5461          | 0.7776   | 0.7989    | 0.7776 | 0.7765 |

| 0.0009        | 9.3333  | 1400 | 1.5691          | 0.7735   | 0.7930    | 0.7735 | 0.7728 |

| 0.0009        | 10.0    | 1500 | 1.5899          | 0.7743   | 0.7935    | 0.7743 | 0.7735 |

| 0.0008        | 10.6667 | 1600 | 1.6074          | 0.7735   | 0.7927    | 0.7735 | 0.7731 |

| 0.0007        | 11.3333 | 1700 | 1.6235          | 0.7735   | 0.7927    | 0.7735 | 0.7731 |

| 0.0007        | 12.0    | 1800 | 1.6367          | 0.7727   | 0.7914    | 0.7727 | 0.7723 |

| 0.0007        | 12.6667 | 1900 | 1.6468          | 0.7735   | 0.7919    | 0.7735 | 0.7730 |

| 0.0006        | 13.3333 | 2000 | 1.6551          | 0.7735   | 0.7909    | 0.7735 | 0.7729 |

| 0.0006        | 14.0    | 2100 | 1.6609          | 0.7727   | 0.7896    | 0.7727 | 0.7721 |

| 0.0006        | 14.6667 | 2200 | 1.6637          | 0.7727   | 0.7896    | 0.7727 | 0.7721 |





### Framework versions



- Transformers 4.48.2

- Pytorch 2.6.0+cu126

- Datasets 3.2.0

- Tokenizers 0.21.0