--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7579721995094031 - name: Precision type: precision value: 0.7873382616180895 - name: Recall type: recall value: 0.7579721995094031 - name: F1 type: f1 value: 0.7484690650364032 --- # vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8337 - Accuracy: 0.7580 - Precision: 0.7873 - Recall: 0.7580 - F1: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1701 | 0.6667 | 100 | 0.8337 | 0.7580 | 0.7873 | 0.7580 | 0.7485 | | 0.1078 | 1.3333 | 200 | 0.9744 | 0.7392 | 0.7683 | 0.7392 | 0.7328 | | 0.0149 | 2.0 | 300 | 1.1815 | 0.7490 | 0.8429 | 0.7490 | 0.7488 | | 0.0518 | 2.6667 | 400 | 1.3244 | 0.7522 | 0.8024 | 0.7522 | 0.7474 | | 0.008 | 3.3333 | 500 | 1.0330 | 0.7727 | 0.8049 | 0.7727 | 0.7753 | | 0.0058 | 4.0 | 600 | 1.2145 | 0.7490 | 0.7861 | 0.7490 | 0.7510 | | 0.0031 | 4.6667 | 700 | 0.9566 | 0.8013 | 0.7999 | 0.8013 | 0.7994 | | 0.0026 | 5.3333 | 800 | 1.3827 | 0.7678 | 0.8112 | 0.7678 | 0.7710 | | 0.0141 | 6.0 | 900 | 1.0396 | 0.8078 | 0.8238 | 0.8078 | 0.8029 | | 0.0194 | 6.6667 | 1000 | 1.3622 | 0.7514 | 0.7612 | 0.7514 | 0.7525 | | 0.0015 | 7.3333 | 1100 | 1.1867 | 0.7784 | 0.8293 | 0.7784 | 0.7784 | | 0.0012 | 8.0 | 1200 | 1.5671 | 0.7269 | 0.7813 | 0.7269 | 0.7367 | | 0.0011 | 8.6667 | 1300 | 1.2410 | 0.7629 | 0.7779 | 0.7629 | 0.7682 | | 0.001 | 9.3333 | 1400 | 1.2369 | 0.7899 | 0.8155 | 0.7899 | 0.7849 | | 0.0009 | 10.0 | 1500 | 1.2282 | 0.7915 | 0.8187 | 0.7915 | 0.7878 | | 0.0008 | 10.6667 | 1600 | 1.2243 | 0.7948 | 0.8223 | 0.7948 | 0.7917 | | 0.0008 | 11.3333 | 1700 | 1.2258 | 0.7989 | 0.8256 | 0.7989 | 0.7957 | | 0.0007 | 12.0 | 1800 | 1.2286 | 0.7997 | 0.8262 | 0.7997 | 0.7965 | | 0.0007 | 12.6667 | 1900 | 1.2296 | 0.7989 | 0.8245 | 0.7989 | 0.7957 | | 0.0007 | 13.3333 | 2000 | 1.2314 | 0.7989 | 0.8245 | 0.7989 | 0.7957 | | 0.0006 | 14.0 | 2100 | 1.2325 | 0.7997 | 0.8252 | 0.7997 | 0.7967 | | 0.0006 | 14.6667 | 2200 | 1.2330 | 0.8005 | 0.8258 | 0.8005 | 0.7978 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0