Adding IFNet_HDv3.py to 4.22
Browse files
4.22/RIFEv4.22/train_log/IFNet_HDv3.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from model.warplayer import warp
|
5 |
+
# from train_log.refine import *
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
12 |
+
padding=padding, dilation=dilation, bias=True),
|
13 |
+
nn.LeakyReLU(0.2, True)
|
14 |
+
)
|
15 |
+
|
16 |
+
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
17 |
+
return nn.Sequential(
|
18 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
19 |
+
padding=padding, dilation=dilation, bias=False),
|
20 |
+
nn.BatchNorm2d(out_planes),
|
21 |
+
nn.LeakyReLU(0.2, True)
|
22 |
+
)
|
23 |
+
|
24 |
+
class Head(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(Head, self).__init__()
|
27 |
+
self.cnn0 = nn.Conv2d(3, 32, 3, 2, 1)
|
28 |
+
self.cnn1 = nn.Conv2d(32, 32, 3, 1, 1)
|
29 |
+
self.cnn2 = nn.Conv2d(32, 32, 3, 1, 1)
|
30 |
+
self.cnn3 = nn.ConvTranspose2d(32, 8, 4, 2, 1)
|
31 |
+
self.relu = nn.LeakyReLU(0.2, True)
|
32 |
+
|
33 |
+
def forward(self, x, feat=False):
|
34 |
+
x0 = self.cnn0(x)
|
35 |
+
x = self.relu(x0)
|
36 |
+
x1 = self.cnn1(x)
|
37 |
+
x = self.relu(x1)
|
38 |
+
x2 = self.cnn2(x)
|
39 |
+
x = self.relu(x2)
|
40 |
+
x3 = self.cnn3(x)
|
41 |
+
if feat:
|
42 |
+
return [x0, x1, x2, x3]
|
43 |
+
return x3
|
44 |
+
|
45 |
+
class ResConv(nn.Module):
|
46 |
+
def __init__(self, c, dilation=1):
|
47 |
+
super(ResConv, self).__init__()
|
48 |
+
self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\
|
49 |
+
)
|
50 |
+
self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True)
|
51 |
+
self.relu = nn.LeakyReLU(0.2, True)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return self.relu(self.conv(x) * self.beta + x)
|
55 |
+
|
56 |
+
class IFBlock(nn.Module):
|
57 |
+
def __init__(self, in_planes, c=64):
|
58 |
+
super(IFBlock, self).__init__()
|
59 |
+
self.conv0 = nn.Sequential(
|
60 |
+
conv(in_planes, c//2, 3, 2, 1),
|
61 |
+
conv(c//2, c, 3, 2, 1),
|
62 |
+
)
|
63 |
+
self.convblock = nn.Sequential(
|
64 |
+
ResConv(c),
|
65 |
+
ResConv(c),
|
66 |
+
ResConv(c),
|
67 |
+
ResConv(c),
|
68 |
+
ResConv(c),
|
69 |
+
ResConv(c),
|
70 |
+
ResConv(c),
|
71 |
+
ResConv(c),
|
72 |
+
)
|
73 |
+
self.lastconv = nn.Sequential(
|
74 |
+
nn.ConvTranspose2d(c, 4*13, 4, 2, 1),
|
75 |
+
nn.PixelShuffle(2)
|
76 |
+
)
|
77 |
+
|
78 |
+
def forward(self, x, flow=None, scale=1):
|
79 |
+
x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False)
|
80 |
+
if flow is not None:
|
81 |
+
flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
|
82 |
+
x = torch.cat((x, flow), 1)
|
83 |
+
feat = self.conv0(x)
|
84 |
+
feat = self.convblock(feat)
|
85 |
+
tmp = self.lastconv(feat)
|
86 |
+
tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
|
87 |
+
flow = tmp[:, :4] * scale
|
88 |
+
mask = tmp[:, 4:5]
|
89 |
+
feat = tmp[:, 5:]
|
90 |
+
return flow, mask, feat
|
91 |
+
|
92 |
+
class IFNet(nn.Module):
|
93 |
+
def __init__(self):
|
94 |
+
super(IFNet, self).__init__()
|
95 |
+
self.block0 = IFBlock(7+16, c=256)
|
96 |
+
self.block1 = IFBlock(8+4+16+8, c=192)
|
97 |
+
self.block2 = IFBlock(8+4+16+8, c=96)
|
98 |
+
self.block3 = IFBlock(8+4+16+8, c=48)
|
99 |
+
self.encode = Head()
|
100 |
+
|
101 |
+
# not used during inference
|
102 |
+
self.teacher = IFBlock(8+4+16+3+8, c=96)
|
103 |
+
self.caltime = nn.Sequential(
|
104 |
+
nn.Conv2d(16+9, 32, 3, 2, 1),
|
105 |
+
nn.LeakyReLU(0.2, True),
|
106 |
+
nn.Conv2d(32, 64, 3, 2, 1),
|
107 |
+
nn.LeakyReLU(0.2, True),
|
108 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
109 |
+
nn.LeakyReLU(0.2, True),
|
110 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
111 |
+
nn.LeakyReLU(0.2, True),
|
112 |
+
nn.Conv2d(64, 1, 3, 1, 1),
|
113 |
+
nn.Sigmoid()
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False):
|
117 |
+
if training == False:
|
118 |
+
channel = x.shape[1] // 2
|
119 |
+
img0 = x[:, :channel]
|
120 |
+
img1 = x[:, channel:]
|
121 |
+
if not torch.is_tensor(timestep):
|
122 |
+
timestep = (x[:, :1].clone() * 0 + 1) * timestep
|
123 |
+
else:
|
124 |
+
timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3])
|
125 |
+
f0 = self.encode(img0[:, :3])
|
126 |
+
f1 = self.encode(img1[:, :3])
|
127 |
+
flow_list = []
|
128 |
+
merged = []
|
129 |
+
mask_list = []
|
130 |
+
warped_img0 = img0
|
131 |
+
warped_img1 = img1
|
132 |
+
flow = None
|
133 |
+
mask = None
|
134 |
+
loss_cons = 0
|
135 |
+
block = [self.block0, self.block1, self.block2, self.block3]
|
136 |
+
for i in range(4):
|
137 |
+
if flow is None:
|
138 |
+
flow, mask, feat = block[i](torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), None, scale=scale_list[i])
|
139 |
+
if ensemble:
|
140 |
+
print("warning: ensemble is not supported since RIFEv4.21")
|
141 |
+
else:
|
142 |
+
wf0 = warp(f0, flow[:, :2])
|
143 |
+
wf1 = warp(f1, flow[:, 2:4])
|
144 |
+
fd, m0, feat = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], wf0, wf1, timestep, mask, feat), 1), flow, scale=scale_list[i])
|
145 |
+
if ensemble:
|
146 |
+
print("warning: ensemble is not supported since RIFEv4.21")
|
147 |
+
else:
|
148 |
+
mask = m0
|
149 |
+
flow = flow + fd
|
150 |
+
mask_list.append(mask)
|
151 |
+
flow_list.append(flow)
|
152 |
+
warped_img0 = warp(img0, flow[:, :2])
|
153 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
154 |
+
merged.append((warped_img0, warped_img1))
|
155 |
+
mask = torch.sigmoid(mask)
|
156 |
+
merged[3] = (warped_img0 * mask + warped_img1 * (1 - mask))
|
157 |
+
if not fastmode:
|
158 |
+
print('contextnet is removed')
|
159 |
+
'''
|
160 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
161 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
162 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
163 |
+
res = tmp[:, :3] * 2 - 1
|
164 |
+
merged[3] = torch.clamp(merged[3] + res, 0, 1)
|
165 |
+
'''
|
166 |
+
return flow_list, mask_list[3], merged
|