---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-si-bank-v3
  results: []
datasets:
- IshanSuga/sinhala-bank-speech
language:
- si
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-si-bank-v3

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [sinhala-bank-speech](https://huggingface.co/datasets/IshanSuga/sinhala-bank-speech) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7054
- Wer Ortho: 64.1791
- Wer: 47.4041

## Model description

The [IshanSuga/whisper-small-si-bank-v3](https://huggingface.co/IshanSuga/whisper-small-si-bank-v3) model is an Automatic Speech Recognition (ASR) 
system fine-tuned on Sinhala speech data, specifically tailored for banking-related conversations. Built upon OpenAI’s Whisper-Small architecture, 
this model leverages transfer learning to enhance transcription accuracy for Sinhala audio.

### Key Features:

Pretrained Foundation: Based on [OpenAI’s Whisper-Small](https://huggingface.co/openai/whisper-small), a robust ASR model trained on a large multilingual dataset.

Fine-tuned for Sinhala: Adapted using domain-specific Sinhala banking conversations to improve transcription quality in financial settings.



## Intended uses & limitations

Use Cases:

Banking Chatbots & Assistants – Enables automated customer service and inquiry handling.

Speech-to-Text Applications – Converts Sinhala speech into text for documentation and accessibility.

Financial Call Center Analytics – Helps in analyzing and transcribing customer interactions.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 250
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:--------:|
| No log        | 0.4   | 2    | 2.4227          | 196.5174  | 222.3476 |
| No log        | 0.8   | 4    | 2.4223          | 184.0796  | 225.9594 |
| No log        | 1.2   | 6    | 2.4041          | 178.1095  | 230.6998 |
| No log        | 1.6   | 8    | 2.3475          | 200.0     | 235.8916 |
| No log        | 2.0   | 10   | 2.2372          | 204.4776  | 230.6998 |
| No log        | 2.4   | 12   | 2.1041          | 226.8657  | 223.7020 |
| No log        | 2.8   | 14   | 2.0246          | 243.7811  | 231.6027 |
| No log        | 3.2   | 16   | 1.9415          | 251.7413  | 225.0564 |
| No log        | 3.6   | 18   | 1.8591          | 261.6915  | 219.8646 |
| No log        | 4.0   | 20   | 1.7851          | 254.2289  | 222.3476 |
| No log        | 4.4   | 22   | 1.7161          | 180.5970  | 219.4131 |
| No log        | 4.8   | 24   | 1.6398          | 179.6020  | 219.6388 |
| 2.0087        | 5.2   | 26   | 1.5743          | 162.1891  | 224.1535 |
| 2.0087        | 5.6   | 28   | 1.5253          | 161.1940  | 229.5711 |
| 2.0087        | 6.0   | 30   | 1.4871          | 148.2587  | 234.3115 |
| 2.0087        | 6.4   | 32   | 1.4461          | 138.8060  | 182.3928 |
| 2.0087        | 6.8   | 34   | 1.4145          | 126.8657  | 156.2077 |
| 2.0087        | 7.2   | 36   | 1.3807          | 114.9254  | 148.0813 |
| 2.0087        | 7.6   | 38   | 1.3431          | 127.8607  | 153.0474 |
| 2.0087        | 8.0   | 40   | 1.2989          | 102.4876  | 144.2438 |
| 2.0087        | 8.4   | 42   | 1.2561          | 96.5174   | 127.3138 |
| 2.0087        | 8.8   | 44   | 1.2180          | 99.0050   | 119.1874 |
| 2.0087        | 9.2   | 46   | 1.1857          | 93.0348   | 116.9300 |
| 2.0087        | 9.6   | 48   | 1.1512          | 94.5274   | 91.1964  |
| 1.1238        | 10.0  | 50   | 1.1099          | 86.5672   | 99.5485  |
| 1.1238        | 10.4  | 52   | 1.0849          | 83.5821   | 113.0926 |
| 1.1238        | 10.8  | 54   | 1.0564          | 83.0846   | 81.9413  |
| 1.1238        | 11.2  | 56   | 1.0203          | 85.0746   | 104.7404 |
| 1.1238        | 11.6  | 58   | 0.9934          | 82.5871   | 97.9684  |
| 1.1238        | 12.0  | 60   | 0.9693          | 84.0796   | 82.1670  |
| 1.1238        | 12.4  | 62   | 0.9399          | 83.0846   | 80.8126  |
| 1.1238        | 12.8  | 64   | 0.8985          | 80.0995   | 71.3318  |
| 1.1238        | 13.2  | 66   | 0.8841          | 78.1095   | 68.3973  |
| 1.1238        | 13.6  | 68   | 0.8707          | 77.6119   | 71.1061  |
| 1.1238        | 14.0  | 70   | 0.8469          | 77.1144   | 69.5260  |
| 1.1238        | 14.4  | 72   | 0.8612          | 77.1144   | 101.8059 |
| 1.1238        | 14.8  | 74   | 0.8603          | 73.6318   | 57.7878  |
| 0.4443        | 15.2  | 76   | 0.8440          | 75.1244   | 57.5621  |
| 0.4443        | 15.6  | 78   | 0.8534          | 72.6368   | 82.1670  |
| 0.4443        | 16.0  | 80   | 0.8377          | 74.6269   | 60.0451  |
| 0.4443        | 16.4  | 82   | 0.8370          | 71.1443   | 67.7201  |
| 0.4443        | 16.8  | 84   | 0.8740          | 71.1443   | 69.5260  |
| 0.4443        | 17.2  | 86   | 0.8431          | 71.1443   | 58.4650  |
| 0.4443        | 17.6  | 88   | 0.8481          | 75.6219   | 62.7540  |
| 0.4443        | 18.0  | 90   | 0.8321          | 75.1244   | 66.8172  |
| 0.4443        | 18.4  | 92   | 0.8490          | 69.6517   | 55.3047  |
| 0.4443        | 18.8  | 94   | 0.8685          | 73.1343   | 66.1400  |
| 0.4443        | 19.2  | 96   | 0.8263          | 72.6368   | 59.1422  |
| 0.4443        | 19.6  | 98   | 0.8659          | 74.6269   | 58.9165  |
| 0.1597        | 20.0  | 100  | 0.8714          | 72.6368   | 60.9481  |
| 0.1597        | 20.4  | 102  | 0.8245          | 74.1294   | 53.9503  |
| 0.1597        | 20.8  | 104  | 0.8476          | 70.1493   | 51.4673  |
| 0.1597        | 21.2  | 106  | 0.8953          | 72.6368   | 57.1106  |
| 0.1597        | 21.6  | 108  | 0.8871          | 70.6468   | 55.5305  |
| 0.1597        | 22.0  | 110  | 0.8335          | 69.1542   | 53.0474  |
| 0.1597        | 22.4  | 112  | 0.9095          | 71.6418   | 80.1354  |
| 0.1597        | 22.8  | 114  | 0.9014          | 97.0149   | 83.9729  |
| 0.1597        | 23.2  | 116  | 0.7924          | 77.1144   | 53.9503  |
| 0.1597        | 23.6  | 118  | 0.8353          | 66.6667   | 48.7585  |
| 0.1597        | 24.0  | 120  | 0.9749          | 69.6517   | 63.6569  |
| 0.1597        | 24.4  | 122  | 0.8675          | 71.1443   | 53.9503  |
| 0.1597        | 24.8  | 124  | 0.7980          | 69.6517   | 50.3386  |
| 0.1073        | 25.2  | 126  | 0.8297          | 69.6517   | 59.5937  |
| 0.1073        | 25.6  | 128  | 0.9054          | 120.3980  | 79.0068  |
| 0.1073        | 26.0  | 130  | 0.8254          | 67.6617   | 51.6930  |
| 0.1073        | 26.4  | 132  | 0.8260          | 67.1642   | 49.8871  |
| 0.1073        | 26.8  | 134  | 0.8305          | 68.1592   | 49.6614  |
| 0.1073        | 27.2  | 136  | 0.8382          | 66.6667   | 54.4018  |
| 0.1073        | 27.6  | 138  | 0.8302          | 68.1592   | 58.6907  |
| 0.1073        | 28.0  | 140  | 0.7815          | 71.6418   | 55.9819  |
| 0.1073        | 28.4  | 142  | 0.7478          | 67.6617   | 48.9842  |
| 0.1073        | 28.8  | 144  | 0.7830          | 76.6169   | 57.7878  |
| 0.1073        | 29.2  | 146  | 0.7150          | 67.1642   | 48.7585  |
| 0.1073        | 29.6  | 148  | 0.7300          | 68.6567   | 48.3070  |
| 0.0584        | 30.0  | 150  | 0.7099          | 70.6468   | 51.2415  |
| 0.0584        | 30.4  | 152  | 0.7285          | 66.6667   | 47.6298  |
| 0.0584        | 30.8  | 154  | 0.7717          | 68.6567   | 60.7223  |
| 0.0584        | 31.2  | 156  | 0.8301          | 67.6617   | 54.6275  |
| 0.0584        | 31.6  | 158  | 0.7430          | 68.1592   | 56.4334  |
| 0.0584        | 32.0  | 160  | 0.6981          | 67.6617   | 47.8555  |
| 0.0584        | 32.4  | 162  | 0.7349          | 66.6667   | 55.3047  |
| 0.0584        | 32.8  | 164  | 0.7662          | 63.6816   | 49.6614  |
| 0.0584        | 33.2  | 166  | 0.8003          | 66.6667   | 55.0790  |
| 0.0584        | 33.6  | 168  | 0.7360          | 63.6816   | 48.0813  |
| 0.0584        | 34.0  | 170  | 0.7166          | 67.1642   | 49.8871  |
| 0.0584        | 34.4  | 172  | 0.7899          | 72.6368   | 57.5621  |
| 0.0584        | 34.8  | 174  | 0.7921          | 81.0945   | 58.6907  |
| 0.0069        | 35.2  | 176  | 0.7251          | 67.6617   | 45.3725  |
| 0.0069        | 35.6  | 178  | 0.7142          | 71.1443   | 51.9187  |
| 0.0069        | 36.0  | 180  | 0.7564          | 74.6269   | 61.1738  |
| 0.0069        | 36.4  | 182  | 0.7012          | 70.1493   | 54.4018  |
| 0.0069        | 36.8  | 184  | 0.6962          | 65.1741   | 43.7923  |
| 0.0069        | 37.2  | 186  | 0.7316          | 66.6667   | 50.3386  |
| 0.0069        | 37.6  | 188  | 0.7482          | 67.1642   | 46.9526  |
| 0.0069        | 38.0  | 190  | 0.6728          | 60.6965   | 40.6321  |
| 0.0069        | 38.4  | 192  | 0.6576          | 63.1841   | 45.8239  |
| 0.0069        | 38.8  | 194  | 0.7134          | 67.1642   | 52.1445  |
| 0.0069        | 39.2  | 196  | 0.6794          | 69.1542   | 50.3386  |
| 0.0069        | 39.6  | 198  | 0.6344          | 67.1642   | 47.8555  |
| 0.0062        | 40.0  | 200  | 0.6440          | 60.6965   | 42.6637  |
| 0.0062        | 40.4  | 202  | 0.7188          | 66.1692   | 49.8871  |
| 0.0062        | 40.8  | 204  | 0.7213          | 64.1791   | 44.9210  |
| 0.0062        | 41.2  | 206  | 0.6740          | 64.6766   | 42.2122  |
| 0.0062        | 41.6  | 208  | 0.6472          | 61.6915   | 41.5350  |
| 0.0062        | 42.0  | 210  | 0.6664          | 60.6965   | 43.3409  |
| 0.0062        | 42.4  | 212  | 0.7102          | 59.7015   | 44.2438  |
| 0.0062        | 42.8  | 214  | 0.7214          | 60.6965   | 47.4041  |
| 0.0062        | 43.2  | 216  | 0.6949          | 63.6816   | 50.1129  |
| 0.0062        | 43.6  | 218  | 0.6944          | 62.6866   | 42.4379  |
| 0.0062        | 44.0  | 220  | 0.6759          | 64.1791   | 44.0181  |
| 0.0062        | 44.4  | 222  | 0.6834          | 65.6716   | 45.5982  |
| 0.0062        | 44.8  | 224  | 0.7508          | 67.6617   | 53.2731  |
| 0.0042        | 45.2  | 226  | 0.7720          | 72.6368   | 67.9458  |
| 0.0042        | 45.6  | 228  | 0.7001          | 65.6716   | 50.5643  |
| 0.0042        | 46.0  | 230  | 0.6872          | 66.6667   | 45.3725  |
| 0.0042        | 46.4  | 232  | 0.7127          | 67.6617   | 46.2754  |
| 0.0042        | 46.8  | 234  | 0.7334          | 65.6716   | 48.3070  |
| 0.0042        | 47.2  | 236  | 0.7485          | 62.1891   | 45.3725  |
| 0.0042        | 47.6  | 238  | 0.7175          | 64.1791   | 49.8871  |
| 0.0042        | 48.0  | 240  | 0.7251          | 63.6816   | 50.1129  |
| 0.0042        | 48.4  | 242  | 0.6949          | 62.6866   | 48.3070  |
| 0.0042        | 48.8  | 244  | 0.6684          | 60.6965   | 44.2438  |
| 0.0042        | 49.2  | 246  | 0.6712          | 62.1891   | 48.0813  |
| 0.0042        | 49.6  | 248  | 0.6939          | 66.1692   | 50.1129  |
| 0.0034        | 50.0  | 250  | 0.7054          | 64.1791   | 47.4041  |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0