--- language: en license: apache-2.0 --- # Shears Model Card: shears-llama-7b-50-cs-heuristic-adapter The heuristic adapter discovered from the [super-adapter](https://huggingface.co/IntelLabs/shears-llama-7b-50-cs-super-adapter) fine-tuned on sparsified LLaMA-7B with some commonsense reasoning datasets using Shears. ## Model Details ### Information - **Model name:** shears-llama-7b-50-cs-heuristic-adapter - **Base model:** [IntelLabs/Llama-1-7B-sparsity50](https://huggingface.co/IntelLabs/Llama-1-7B-sparsity50) - **Sparsity:** 50% - **Domain:** Commonsense - **Subnetwork version:** Heuristic - **NNCF Configuration:** [nncf_shears_llama.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/nncf_config/nncf_shears_llama.json) ### Adapter Configuration - **LoRA rank:** 32 - **LoRA alpha:** 64 - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, down_proj - **LoRA rank search space:** [32, 24, 16] (for each LoRA module) ### Training Hyperparameters - **Batch size:** 16 - **Learning rate:** 3e-4 - **Epoch:** 5 ### Training Data Unified commonsense reasoning dataset: [commonsense_170k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_170k.json). ### Evaluation Data [BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json). ## How to use Use our modified PEFT library (apply [patch](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears/patches/peft-modifications-for-shears-inference-usage.patch)): ```bash git clone https://github.com/huggingface/peft.git cd peft && git checkout v0.5.0 && git apply --ignore-space-change --ignore-whitespace peft-modifications-for-shears-inference-usage.patch && pip install -e . && cd .. ``` ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM from transformers import AutoTokenizer def generate_prompt(instruction): return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: """ base_model = AutoModelForCausalLM.from_pretrained("IntelLabs/Llama-1-7B-sparsity50") model = PeftModel.from_pretrained(base_model, "IntelLabs/shears-llama-7b-50-cs-heuristic-adapter") model.eval() non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()]) print(f"Number of all non-zero parameters: {non_zero_params}") tokenizer = AutoTokenizer.from_pretrained("IntelLabs/Llama-1-7B-sparsity50") instruction = "Please choose the correct answer to the question: A cactus stem is used to store\n\nAnswer1: fruit " "Answer2: liquid Answer3: food Answer4: spines\n\nAnswer format: answer1/answer2/answer3/answer4" prompt = generate_prompt(instruction) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(model.device) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=256, use_cache=True, num_beams=4, ) s = generation_output.sequences[0] output = tokenizer.decode(s) print(output) ``` ## Evaluation Results | Model | Sparsity | BoolQ | PIQA | SIQA | HellaSwag | WinoG | ARC-e | ARC-c | OBQA | Average | |----------------------|-----------|---------|--------|--------|------------|--------|--------|---------|--------|----------| | ChatGPT | - | 73.1 | 85.4 | 68.5 | 78.5 | 66.1 | 89.8 | 79.9 | 74.8 | 77.0 | | LLaMA-7B-LoRA | - | 68.9 | 80.7 | 77.4 | 78.1 | 78.8 | 77.8 | 61.3 | 74.8 | 74.7 | | [**LLaMA-7B-Shears**](https://huggingface.co/IntelLabs/shears-llama-7b-50-cs-heuristic-adapter) | **50%** | 67.3 | 79.1 | 77.5 | 73.3 | 77.7 | 74.4 | 57.9 | 72.8 | 72.5 | ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears) - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search](https://arxiv.org/abs/2404.10934) ## Citation ```bash @article{munoz2024shears, title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={The 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-2024)}, year={2024} } ``` ## License Apache-2.0