--- language: en license: apache-2.0 --- # Shears Model Card: Shears-llama-13b-50-math-heuristic Fine tuned model on LLaMA-13B with some math reasoning datasets using Shears. ## Model Details ### Information - **Model name:** Shears-llama-13b-50-math-heuristic - **Base model:** [LLaMA-13b](https://huggingface.co/yahma/llama-13b-hf) - **Sparsity:** 50% - **Domain:** Math - **Subnetwork version:** Heuristic ### Adapter Configuration - **LoRA rank:** 32 (24 in the heuristic subnetwork) - **LoRA alpha:** 64 - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, down_proj - **LoRA rank search space:** [32, 24, 16] ### Training Hyperparameters - **Batch size:** 16 - **Learning rate:** 3e-4 - **Epoch:** 3 ### Training Data Unified math reasoning dataset: [math_10k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_10k.json) (collected with the training sets of GSM8K, MAWPS, and AQuA). ### Evaluation Data [GSM8K](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/gsm8k/test.json), [AQuA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/AQuA/test.json), [MAWPS](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/mawps/test.json), [SVAMP](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/SVAMP/test.json) ## How to use ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM from transformers import AutoTokenizer def generate_prompt(instruction): return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: """ base_model_path = "shears-llama-13b-50-math-heuristic/base_model" adapter_model_path = "shears-llama-13b-50-math-heuristic/adapter_model" base_model = AutoModelForCausalLM.from_pretrained(base_model_path) model = PeftModel.from_pretrained(base_model, adapter_model_path) model.eval() non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()]) print(f"Number of all non-zero parameters: {non_zero_params}") tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.pad_token_id = 0 instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?" prompt = generate_prompt(instruction) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(model.device) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=256, use_cache=True, num_beams=4, ) s = generation_output.sequences[0] output = tokenizer.decode(s) print(output) ``` ## Evaluation Results | Model | Sparsity | GSM8K | AQuA | MAWPS | SVAMP | Average | |-----------------------|-------------|-------|-------|-------|-------|---------| | LLaMA-7B-LoRA | - | 37.5 | 18.9 | 79.0 | 52.1 | 46.9 | | [**LLaMA-7B-Shears**](https://huggingface.co/IntelLabs/shears-llama-7b-50-math-heuristic) | **50%** | 36.1 | 22.0 | 78.6 | 44.5 | 45.3 | | LLaMA-13B-LoRA | - | 47.5 | 18.5 | 83.6 | 54.6 | 51.1 | | [**LLaMA-13B-Shears**](https://huggingface.co/IntelLabs/shears-llama-13b-50-math-heuristic) | **50%** | 45.1 | 22.0 | 83.2 | 53.3 | 50.9 | ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/Shears) - **Paper:** [Shears: Unstructured Sparsity with Neural Low-rank Adapter Search]() ## Citation ```bash @article{munoz2024shears, title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={}, year={2024} } ``` ## License Apache-2.0