--- language: en license: apache-2.0 tags: - text-classfication - int8 - Intel® Neural Compressor - neural-compressor - PostTrainingStatic datasets: - mrpc metrics: - f1 --- # INT8 BERT base uncased finetuned MRPC ## Post-training static quantization ### PyTorch This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc). The calibration dataloader is the train dataloader. The calibration sampling size is 1000. The linear module **bert.encoder.layer.9.output.dense** falls back to fp32 to meet the 1% relative accuracy loss. #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8959|0.9042| | **Model size (MB)** |119|418| #### Load with Intel® Neural Compressor: ```python from optimum.intel.neural_compressor import IncQuantizedModelForSequenceClassification int8_model = IncQuantizedModelForSequenceClassification.from_pretrained( 'Intel/bert-base-uncased-mrpc-int8-static', ) ``` ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc). The calibration dataloader is the eval dataloader. The calibration sampling size is 100. #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.9021|0.9042| | **Model size (MB)** |236|418| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/bert-base-uncased-mrpc-int8-static') ```