import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict from accelerate import load_checkpoint_and_dispatch import fcntl # For file locking import os # For file operations import time # For sleep function # Set the max_split_size globally at the start os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" # Print to verify the environment variable is correctly set print(f"PYTORCH_CUDA_ALLOC_CONF: {os.environ.get('PYTORCH_CUDA_ALLOC_CONF')}") # Global variables to persist the model and tokenizer between invocations model = None tokenizer = None # Function to format chat messages using Qwen's chat template def format_chat(messages: List[Dict[str, str]], tokenizer) -> str: """ Format chat messages using Qwen's chat template. """ return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) def model_fn(model_dir, context=None): global model, tokenizer # Path to lock file for ensuring single loading lock_file = "/tmp/model_load.lock" # Path to in-progress file indicating model loading is happening in_progress_file = "/tmp/model_loading_in_progress" if model is not None and tokenizer is not None: print("Model and tokenizer already loaded, skipping reload.") return model, tokenizer # Attempt to acquire the lock with open(lock_file, 'w') as lock: print("Attempting to acquire model load lock...") fcntl.flock(lock, fcntl.LOCK_EX) # Exclusive lock try: # Check if another worker is in the process of loading if os.path.exists(in_progress_file): print("Another worker is currently loading the model, waiting...") # Poll the in-progress flag until the other worker finishes loading while os.path.exists(in_progress_file): time.sleep(5) # Wait for 5 seconds before checking again print("Loading complete by another worker, skipping reload.") return model, tokenizer # If no one is loading, start loading the model and set the in-progress flag print("No one is loading, proceeding to load the model.") with open(in_progress_file, 'w') as f: f.write("loading") # Loading the model and tokenizer if model is None or tokenizer is None: print("Loading the model and tokenizer...") offload_dir = "/tmp/offload_dir" os.makedirs(offload_dir, exist_ok=True) # Load and dispatch model across 4 GPUs using tensor parallelism model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype="auto") model = load_checkpoint_and_dispatch( model, model_dir, device_map="auto", # Automatically map layers across GPUs offload_folder=offload_dir, # Offload parts to disk if needed max_memory = {i: "15GiB" for i in range(torch.cuda.device_count())}, # Example for reducing usage per GPU no_split_module_classes=["QwenForCausalLM"] # Ensure model is split across the GPUs ) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_dir) except Exception as e: print(f"Error loading model and tokenizer: {e}") raise finally: # Remove the in-progress flag once the loading is complete if os.path.exists(in_progress_file): os.remove(in_progress_file) # Release the lock fcntl.flock(lock, fcntl.LOCK_UN) return model, tokenizer # Custom predict function for SageMaker def predict_fn(input_data, model_and_tokenizer, context=None): """ Generate predictions for the input data. """ try: model, tokenizer = model_and_tokenizer data = json.loads(input_data) # Format the prompt using Qwen's chat template messages = data.get("messages", []) formatted_prompt = format_chat(messages, tokenizer) # Tokenize the input inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda:0") # Send input to GPU 0 for generation # Generate output outputs = model.generate( inputs['input_ids'], max_new_tokens=data.get("max_new_tokens", 512), temperature=data.get("temperature", 0.7), top_p=data.get("top_p", 0.9), repetition_penalty=data.get("repetition_penalty", 1.0), length_penalty=data.get("length_penalty", 1.0), do_sample=True ) # Decode the output generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] # Build response response = { "id": "chatcmpl-uuid", "object": "chat.completion", "model": "qwen-72b", "choices": [{ "index": 0, "message": { "role": "assistant", "content": generated_text }, "finish_reason": "stop" }], "usage": { "prompt_tokens": len(inputs['input_ids'][0]), "completion_tokens": len(outputs[0]), "total_tokens": len(inputs['input_ids'][0]) + len(outputs[0]) } } return response except Exception as e: return {"error": str(e), "details": repr(e)} # Define input format for SageMaker def input_fn(serialized_input_data, content_type, context=None): """ Prepare the input data for inference. """ return serialized_input_data # Define output format for SageMaker def output_fn(prediction_output, accept, context=None): """ Convert the model output to a JSON response. """ return json.dumps(prediction_output)