--- library_name: lerobot tags: - model_hub_mixin - pytorch_model_hub_mixin - robotics - dot license: apache-2.0 datasets: - lerobot/aloha_sim_transfer_cube_human pipeline_tag: robotics --- # Model Card for "Decoder Only Transformer (DOT) Policy" for ALOHA cube transfer problem Read more about the model and implementation details in the [DOT Policy repository](https://github.com/IliaLarchenko/dot_policy). This model is trained using the [LeRobot library](https://huggingface.co/lerobot) and achieves state-of-the-art results on behavior cloning on ALOHA bimanual insert dataset. It achieves 92.6% success rate vs. 83% for the previous state-of-the-art model (ACT). (Note: it looks like the LeRobot implementation is not deterministic of environment makes it easier than the original problem, I am comparing it with https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human). You can use this model by installing LeRobot from [this branch](https://github.com/IliaLarchenko/lerobot/tree/dot_new_config) To train the model: ```bash python lerobot/scripts/train.py \ --policy.type=dot \ --dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \ --env.type=aloha \ --env.task=AlohaTransferCube-v0 \ --output_dir=outputs/train/pusht_aloha_transfer_cube \ --batch_size=24 \ --log_freq=1000 \ --eval_freq=5000 \ --save_freq=5000 \ --offline.steps=100000 \ --seed=100000 \ --wandb.enable=true \ --num_workers=24 \ --use_amp=true \ --device=cuda \ --policy.optimizer_lr=0.0001 \ --policy.optimizer_min_lr=0.0001 \ --policy.optimizer_lr_cycle_steps=100000 \ --policy.train_horizon=75 \ --policy.inference_horizon=50 \ --policy.lookback_obs_steps=20 \ --policy.lookback_aug=5 \ --policy.rescale_shape="[480,640]" \ --policy.alpha=0.98 \ --policy.train_alpha=0.99 \ --wandb.project=transfer_cube ``` To evaluate the model: ```bash python lerobot/scripts/eval.py \ --policy.path=IliaLarchenko/dot_transfer_cube \ --env.type=aloha \ --env.task=AlohaTransferCube-v0 \ --eval.n_episodes=1000 \ --eval.batch_size=100 \ --seed=1000000 ``` Model size: - Total parameters: 14.1m - Trainable parameters: 2.9m