Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## ImageNet Results
|
3 |
+
In our ImageNet experiment, we aimed to assess the performance of Mice ViTs on a more complex and diverse dataset, ImageNet. We trained mice ViTs on the classifying the 1000 ImageNet classes.
|
4 |
+
|
5 |
+
## Training Details
|
6 |
+
Similar to the dSprites experiment, for each attention layer setting, we explored two model variants: an attention-only model and a model combining attention with the MLP module. Dropout and layer normalization were not applied for simplicity. The detailed training logs and metrics can be found [here](https://wandb.ai/vit-prisma/Imagenet/overview?workspace=user-yash-vadi).
|
7 |
+
|
8 |
+
## Table of Results
|
9 |
+
Below table describe the accuracy `[ <Acc> | <Top5 Acc> ]` of Mice ViTs with different configuration.
|
10 |
+
| **Size** | **NumLayers** | **Attention+MLP** | **AttentionOnly** | **Model Link** |
|
11 |
+
|:--------:|:-------------:|:-----------------:|:-----------------:|--------------------------------------------|
|
12 |
+
| **tiny** | **1** | 0.16 \| 0.33 | 0.11 \| 0.25 | [AttentionOnly](https://huggingface.co/IamYash/ImageNet-tiny-AttentionOnly), [Attention+MLP](https://huggingface.co/IamYash/ImageNet-tiny-Attention-and-MLP) |
|
13 |
+
| **base** | **2** | 0.23 \| 0.44 | 0.16 \| 0.34 | [AttentionOnly](https://huggingface.co/IamYash/ImageNet-base-AttentionOnly), [Attention+MLP](https://huggingface.co/IamYash/ImageNet-base-Attention-and-MLP) |
|
14 |
+
| **small**| **3** | 0.28 \| 0.51 | 0.17 \| 0.35 | [AttentionOnly](https://huggingface.co/IamYash/ImageNet-small-AttentionOnly), [Attention+MLP](https://huggingface.co/IamYash/ImageNet-small-Attention-and-MLP) |
|
15 |
+
| **medium**|**4** | 0.33 \| 0.56 | 0.17 \| 0.36 | [AttentionOnly](https://huggingface.co/IamYash/ImageNet-medium-AttentionOnly), [Attention+MLP](https://huggingface.co/IamYash/ImageNet-medium-Attention-and-MLP) |
|