bodangjozinski commited on
Commit
63c91b1
1 Parent(s): d8414ec

Upload faster_rcnn_resnet101_1xcoco-default-mmdetection-config.py

Browse files

# Config - Base MMDetection config
- for usage in the app [IllegalDumpSiteDetectionAndLandfillMonitoring.](https://github.com/IntelligentNetworkSolutions/IllegalDumpSiteDetectionAndLandfillMonitoring.)
- variables for num_batch_size, num_epochs, num_frozen_stages

# Model Weight
- downloaded from:
- page:
[MMDetection Faster RCNN Model Zoo](https://github.com/open-mmlab/mmdetection/tree/main/configs/faster_rcnn)
- specifically:
[MMDetection Trained Faster RCNN on ResNet 101 with COCO - Model File](https://download.openxlab.org.cn/models/mmdetection/FasterR-CNN/weight/faster-rcnn_r101_fpn_1x_coco)

faster_rcnn_resnet101_1xcoco-default-mmdetection-config.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ num_batch_size = 2
2
+ num_epochs = 12
3
+ num_frozen_stages = 1
4
+
5
+ # DATASET
6
+ dataset_type = 'CocoDataset'
7
+ data_root = 'data/coco/'
8
+
9
+ backend_args = None
10
+
11
+ train_pipeline = [
12
+ dict(type='LoadImageFromFile', backend_args=backend_args),
13
+ dict(type='LoadAnnotations', with_bbox=True),
14
+ dict(type='Resize', scale=(1280, 1280), keep_ratio=True),
15
+ dict(type='RandomFlip', prob=0.5),
16
+ dict(type='PackDetInputs')
17
+ ]
18
+ train_dataloader = dict(
19
+ batch_size=num_batch_size,
20
+ num_workers=2,
21
+ persistent_workers=True,
22
+ sampler=dict(type='DefaultSampler', shuffle=True),
23
+ batch_sampler=dict(type='AspectRatioBatchSampler'),
24
+ dataset=dict(
25
+ type=dataset_type,
26
+ data_root=data_root,
27
+ ann_file='train/annotations_coco.json',
28
+ data_prefix=dict(img='train/'),
29
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
30
+ pipeline=train_pipeline,
31
+ backend_args=backend_args))
32
+
33
+ val_pipeline = [
34
+ dict(type='LoadImageFromFile', backend_args=backend_args),
35
+ dict(type='Resize', scale=(1280, 1280), keep_ratio=True),
36
+ dict(type='LoadAnnotations', with_bbox=True),
37
+ dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
38
+ ]
39
+ val_dataloader = dict(
40
+ batch_size=num_batch_size,
41
+ num_workers=2,
42
+ persistent_workers=True,
43
+ drop_last=False,
44
+ sampler=dict(type='DefaultSampler', shuffle=False),
45
+ dataset=dict(
46
+ type=dataset_type,
47
+ data_root=data_root,
48
+ ann_file='valid/annotations_coco.json',
49
+ data_prefix=dict(img='valid/'),
50
+ test_mode=True,
51
+ pipeline=val_pipeline,
52
+ backend_args=backend_args))
53
+ val_evaluator = dict(
54
+ type='CocoMetric',
55
+ ann_file=data_root + 'valid/annotations_coco.json',
56
+ metric='bbox',
57
+ format_only=False,
58
+ backend_args=backend_args)
59
+
60
+ test_pipeline = [
61
+ dict(type='LoadImageFromFile', backend_args=backend_args),
62
+ dict(type='Resize', scale=(1280, 1280), keep_ratio=True),
63
+ dict(type='LoadAnnotations', with_bbox=True),
64
+ dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
65
+ ]
66
+ test_dataloader = dict(
67
+ batch_size=num_batch_size,
68
+ num_workers=2,
69
+ persistent_workers=True,
70
+ drop_last=False,
71
+ sampler=dict(type='DefaultSampler', shuffle=False),
72
+ dataset=dict(
73
+ type=dataset_type,
74
+ data_root=data_root,
75
+ ann_file=data_root + 'test/annotations_coco.json',
76
+ data_prefix=dict(img='test/'),
77
+ test_mode=True,
78
+ pipeline=test_pipeline))
79
+ test_evaluator = dict(
80
+ type='CocoMetric',
81
+ metric='bbox',
82
+ format_only=True,
83
+ ann_file=data_root + 'test/annotations_coco.json',
84
+ outfile_prefix='./work_dirs/coco_detection/test')
85
+
86
+
87
+ # MODEL
88
+ model = dict(
89
+ type='FasterRCNN',
90
+ data_preprocessor=dict(
91
+ type='DetDataPreprocessor',
92
+ mean=[123.675, 116.28, 103.53],
93
+ std=[58.395, 57.12, 57.375],
94
+ bgr_to_rgb=True,
95
+ pad_size_divisor=32),
96
+ backbone=dict(
97
+ type='ResNet',
98
+ depth=50,
99
+ num_stages=4,
100
+ out_indices=(0, 1, 2, 3),
101
+ frozen_stages=num_frozen_stages,
102
+ norm_cfg=dict(type='BN', requires_grad=True),
103
+ norm_eval=True,
104
+ style='pytorch',
105
+ init_cfg=dict(type='Pretrained', checkpoint='https://download.openxlab.org.cn/models/mmdetection/FasterR-CNN/weight/faster-rcnn_r101_fpn_1x_coco')),
106
+ neck=dict(type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5),
107
+ rpn_head=dict(
108
+ type='RPNHead',
109
+ in_channels=256, feat_channels=256,
110
+ anchor_generator=dict(type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]),
111
+ bbox_coder=dict(type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]),
112
+ loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
113
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
114
+ roi_head=dict(
115
+ type='StandardRoIHead',
116
+ bbox_roi_extractor=dict(
117
+ type='SingleRoIExtractor',
118
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
119
+ out_channels=256, featmap_strides=[4, 8, 16, 32]),
120
+ bbox_head=dict(
121
+ type='Shared2FCBBoxHead',
122
+ in_channels=256,
123
+ fc_out_channels=1024,
124
+ roi_feat_size=7,
125
+ num_classes=80,
126
+ bbox_coder=dict(type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]),
127
+ reg_class_agnostic=False,
128
+ loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
129
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
130
+ # model training and testing settings
131
+ train_cfg=dict(
132
+ rpn=dict(
133
+ assigner=dict(
134
+ type='MaxIoUAssigner',
135
+ pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3,
136
+ match_low_quality=True, ignore_iof_thr=-1),
137
+ sampler=dict(type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False),
138
+ allowed_border=-1, pos_weight=-1, debug=False),
139
+ rpn_proposal=dict(nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0),
140
+ rcnn=dict(
141
+ assigner=dict(
142
+ type='MaxIoUAssigner',
143
+ pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5,
144
+ match_low_quality=False, ignore_iof_thr=-1),
145
+ sampler=dict(type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True),
146
+ pos_weight=-1,
147
+ debug=False)),
148
+ test_cfg=dict(
149
+ rpn=dict(nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0),
150
+ rcnn=dict(score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)
151
+ ))
152
+
153
+ # RUNTIME
154
+ default_scope = 'mmdet'
155
+
156
+ default_hooks = dict(
157
+ timer=dict(type='IterTimerHook'),
158
+ logger=dict(type='LoggerHook', interval=50),
159
+ param_scheduler=dict(type='ParamSchedulerHook'),
160
+ checkpoint=dict(type='CheckpointHook', interval=1),
161
+ sampler_seed=dict(type='DistSamplerSeedHook'),
162
+ visualization=dict(type='DetVisualizationHook'))
163
+
164
+ env_cfg = dict(
165
+ cudnn_benchmark=False,
166
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
167
+ dist_cfg=dict(backend='nccl'),
168
+ )
169
+
170
+ vis_backends = [dict(type='LocalVisBackend')]
171
+ visualizer = dict(type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
172
+ log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
173
+
174
+ log_level = 'INFO'
175
+ load_from = None
176
+ resume = False
177
+
178
+ # SCHEDULE
179
+ # training schedule for 1x
180
+ train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=num_epochs, val_interval=1)
181
+ val_cfg = dict(type='ValLoop')
182
+ test_cfg = dict(type='TestLoop')
183
+
184
+ # learning rate
185
+ param_scheduler = [
186
+ dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
187
+ dict(type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1)
188
+ ]
189
+
190
+ # optimizer
191
+ optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
192
+
193
+ auto_scale_lr = dict(enable=False, base_batch_size=16)