T-Almeida commited on
Commit
1e84124
·
verified ·
1 Parent(s): 0fd6c98

Upload model

Browse files
config.json CHANGED
@@ -60,6 +60,6 @@
60
  "type_vocab_size": 2,
61
  "update_vocab": 28899,
62
  "use_cache": true,
63
- "version": "0.1.0",
64
  "vocab_size": 28899
65
  }
 
60
  "type_vocab_size": 2,
61
  "update_vocab": 28899,
62
  "use_cache": true,
63
+ "version": "0.1.1",
64
  "vocab_size": 28899
65
  }
configuration_bionextextractor.py CHANGED
@@ -11,13 +11,17 @@ class BioNExtExtractorConfig(PretrainedConfig):
11
  arch_type = "mha",
12
  index_type = "both",
13
  novel = True,
14
- version="0.1.0",
 
 
15
  **kwargs,
16
  ):
17
  self.version = version
18
  self.arch_type = arch_type
19
  self.index_type = index_type
20
  self.novel = novel
 
 
21
  super().__init__(**kwargs)
22
 
23
 
 
11
  arch_type = "mha",
12
  index_type = "both",
13
  novel = True,
14
+ tokenizer_special_tokens = ['[s1]','[e1]', '[s2]','[e2]' ],
15
+ update_vocab = None,
16
+ version="0.1.1",
17
  **kwargs,
18
  ):
19
  self.version = version
20
  self.arch_type = arch_type
21
  self.index_type = index_type
22
  self.novel = novel
23
+ self.tokenizer_special_tokens = tokenizer_special_tokens
24
+ self.update_vocab = update_vocab
25
  super().__init__(**kwargs)
26
 
27
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5614db1403a5339630fef087a18cc985693d4b7188cf6c81aa9f15eff71fe520
3
- size 1350790260
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f371a5688163ffd745b58918b63752337769ef7223c9ad3702e5af33d06bd1
3
+ size 1350787852
modeling_bionextextractor.py CHANGED
@@ -47,9 +47,13 @@ class RelationClassifierBase(PreTrainedModel, RelationLossMixin):
47
  def __init__(self, config):
48
  super().__init__(config)
49
  self.num_labels = config.num_labels
50
-
51
  #print(config)
52
  self.bert = BertModel(config, add_pooling_layer=False)
 
 
 
 
53
 
54
  def group_embeddings_by_index(self, embeddings, indexes):
55
  assert len(embeddings.shape)==3
@@ -126,6 +130,11 @@ class RelationClassifierBiLSTM(RelationClassifierBase):
126
  self.lstm = torch.nn.LSTM(config.hidden_size, (config.hidden_size) // 2, self.num_lstm_layers, batch_first=True, bidirectional=True)
127
  self.fc = torch.nn.Linear(config.hidden_size, self.num_labels) # 2 for bidirection
128
 
 
 
 
 
 
129
  def classifier_representation(self, embeddings, mask=None):
130
  out, _ = self.lstm(embeddings)
131
  return out[:, -1, :]
@@ -139,6 +148,10 @@ class RelationAndNovelClassifierBiLSTM(RelationClassifierBiLSTM, RelationAndNove
139
  super().__init__(config)
140
  self.fc_novel = torch.nn.Linear(config.hidden_size, 2) # 2 for bidirection
141
 
 
 
 
 
142
  def classifier(self, class_representation):
143
  return super().classifier(class_representation), self.fc_novel(class_representation)
144
 
@@ -155,6 +168,13 @@ class RelationClassifierMHAttention(RelationClassifierBase):
155
  self.fc1_activation = torch.nn.GELU(approximate='none')
156
  self.fc2 = torch.nn.Linear(config.hidden_size//2, self.num_labels) # 2 for bidirection
157
 
 
 
 
 
 
 
 
158
  def classifier_representation(self, embeddings, mask=None):
159
  batch_size = embeddings.shape[0]
160
  weight = self.weight.repeat(batch_size, 1, 1)
@@ -185,6 +205,11 @@ class RelationAndNovelClassifierMHAttention(RelationClassifierMHAttention, Relat
185
  self.fc1_novel_activation = torch.nn.GELU(approximate='none')
186
  self.fc2_novel = torch.nn.Linear(config.hidden_size//2, 2) # 2 for bidirection
187
 
 
 
 
 
 
188
  def classifier(self, class_representation, relation_mask=None):
189
  x = self.fc1_novel(class_representation)
190
  x = self.fc1_novel_activation(x)
@@ -196,17 +221,9 @@ ARCH_MAPPING = {"mhawNovelty": RelationAndNovelClassifierMHAttention,
196
  "bilstmwNovelty" : RelationAndNovelClassifierBiLSTM,
197
  "bilstm": RelationClassifierBiLSTM}
198
 
199
- class BioNExtExtractorModel(PreTrainedModel):
 
 
200
  config_class=BioNExtExtractorConfig
201
 
202
- def __init__(self, config):
203
- super().__init__(config)
204
-
205
- if config.novel:
206
- self.model = ARCH_MAPPING[f"{config.arch_type}wNovelty"](config)
207
- else:
208
- self.model = ARCH_MAPPING[config.arch_type](config)
209
-
210
- def forward(self, *args, **kwargs):
211
- return self.model(*args, **kwargs)
212
 
 
47
  def __init__(self, config):
48
  super().__init__(config)
49
  self.num_labels = config.num_labels
50
+ self.config = config
51
  #print(config)
52
  self.bert = BertModel(config, add_pooling_layer=False)
53
+
54
+ def training_mode(self):
55
+ if self.config.update_vocab is not None:
56
+ self.bert.resize_token_embeddings(self.config.update_vocab)
57
 
58
  def group_embeddings_by_index(self, embeddings, indexes):
59
  assert len(embeddings.shape)==3
 
130
  self.lstm = torch.nn.LSTM(config.hidden_size, (config.hidden_size) // 2, self.num_lstm_layers, batch_first=True, bidirectional=True)
131
  self.fc = torch.nn.Linear(config.hidden_size, self.num_labels) # 2 for bidirection
132
 
133
+ def training_mode(self):
134
+ super().training_mode()
135
+ self.lstm.reset_parameters()
136
+ self.fc.reset_parameters()
137
+
138
  def classifier_representation(self, embeddings, mask=None):
139
  out, _ = self.lstm(embeddings)
140
  return out[:, -1, :]
 
148
  super().__init__(config)
149
  self.fc_novel = torch.nn.Linear(config.hidden_size, 2) # 2 for bidirection
150
 
151
+ def training_mode(self):
152
+ super().training_mode()
153
+ self.fc_novel.reset_parameters()
154
+
155
  def classifier(self, class_representation):
156
  return super().classifier(class_representation), self.fc_novel(class_representation)
157
 
 
168
  self.fc1_activation = torch.nn.GELU(approximate='none')
169
  self.fc2 = torch.nn.Linear(config.hidden_size//2, self.num_labels) # 2 for bidirection
170
 
171
+ def training_mode(self):
172
+ super().training_mode()
173
+ torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
174
+ self.MHattention_layer._reset_parameters()
175
+ self.fc1.reset_parameters()
176
+ self.fc2.reset_parameters()
177
+
178
  def classifier_representation(self, embeddings, mask=None):
179
  batch_size = embeddings.shape[0]
180
  weight = self.weight.repeat(batch_size, 1, 1)
 
205
  self.fc1_novel_activation = torch.nn.GELU(approximate='none')
206
  self.fc2_novel = torch.nn.Linear(config.hidden_size//2, 2) # 2 for bidirection
207
 
208
+ def training_mode(self):
209
+ super().training_mode()
210
+ self.fc1_novel.reset_parameters()
211
+ self.fc2_novel.reset_parameters()
212
+
213
  def classifier(self, class_representation, relation_mask=None):
214
  x = self.fc1_novel(class_representation)
215
  x = self.fc1_novel_activation(x)
 
221
  "bilstmwNovelty" : RelationAndNovelClassifierBiLSTM,
222
  "bilstm": RelationClassifierBiLSTM}
223
 
224
+ ## Changing the name to be compatible with HF API
225
+
226
+ class BioNExtExtractorModel(RelationAndNovelClassifierMHAttention):
227
  config_class=BioNExtExtractorConfig
228
 
 
 
 
 
 
 
 
 
 
 
229