--- license: gpl-3.0 pipeline_tag: image-text-to-text --- # LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token [![arXiv](https://img.shields.io/badge/arXiv-2501.03895-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2501.03895) [![model](https://img.shields.io/badge/%F0%9F%A4%97%20huggingface%20-llava--mini--llama--3.1--8b-orange.svg)](https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b) > **[Shaolei Zhang](https://zhangshaolei1998.github.io/), [Qingkai Fang](https://fangqingkai.github.io/), [Zhe Yang](https://nlp.ict.ac.cn/yjdw/xs/ssyjs/202210/t20221020_52708.html), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)** LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Guided by the interpretability within LMM, LLaVA-Mini significantly improves efficiency while ensuring vision capabilities. [Code](https://github.com/ictnlp/LLaVA-Mini), [model](https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b) and [demo](https://github.com/ictnlp/LLaVA-Mini#-demo) of LLaVA-Mini are available now! Refer to our [GitHub repo]((https://github.com/ictnlp/LLaVA-Mini)) for details of LLaVA-Mini! > [!Note] > LLaVA-Mini only requires **1 token** to represent each image, which improves the efficiency of image and video understanding, including: > - **Computational effort**: 77% FLOPs reduction > - **Response latency**: reduce from 100 milliseconds to 40 milliseconds > - **VRAM memory usage**: reduce from 360 MB/image to 0.6 MB/image, support 3-hour video processing

performance

💡**Highlight**: 1. **Good Performance**: LLaVA-Mini achieves performance comparable to LLaVA-v1.5 while using only 1 vision token instead of 576 (compression rate of 0.17%). 2. **High Efficiency**: LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory. 3. **Insights**: To develop LLaVA-Mini, which reduces vision tokens while maintaining visual understanding, we conduct a preliminary analysis to explore how large multimodal models (LMMs) process visual tokens. Please refer to our [paper](https://arxiv.org/pdf/2501.03895) for a detailed analysis and our conclusions. ## 🖥 Demo

llava_mini

- Download LLaVA-Mini model from [here](https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b). - Run these scripts and Interact with LLaVA-Mini in your browser: ```bash # Launch a controller python -m llavamini.serve.controller --host 0.0.0.0 --port 10000 & # Build the API of LLaVA-Mini CUDA_VISIBLE_DEVICES=0 python -m llavamini.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ICTNLP/llava-mini-llama-3.1-8b --model-name llava-mini & # Start the interactive interface python -m llavamini.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7860 ``` ## 🔥 Quick Start ### Requirements - Install packages: ```bash conda create -n llavamini python=3.10 -y conda activate llavamini pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation ``` ### Command Interaction - Image understanding, using `--image-file `: ```bash # Image Understanding CUDA_VISIBLE_DEVICES=0 python llavamini/eval/run_llava_mini.py \ --model-path ICTNLP/llava-mini-llama-3.1-8b \ --image-file llavamini/serve/examples/baby_cake.png \ --conv-mode llava_llama_3_1 --model-name "llava-mini" \ --query "What's the text on the cake?" ``` - Video understanding, using `--video-file `: ```bash # Video Understanding CUDA_VISIBLE_DEVICES=0 python llavamini/eval/run_llava_mini.py \ --model-path ICTNLP/llava-mini-llama-3.1-8b \ --video-file llavamini/serve/examples/fifa.mp4 \ --conv-mode llava_llama_3_1 --model-name "llava-mini" \ --query "What happened in this video?" ``` ### Reproduction and Evaluation - Refer to [Evaluation.md](docs/Evaluation.md) for the evaluation of LLaVA-Mini on image/video benchmarks. ### Cases - LLaVA-Mini achieves high-quality image understanding and video understanding.

case1

More cases

case2

case3

case4

- LLaVA-Mini dynamically compresses image to capture important visual information (brighter areas are more heavily weighted during compression).

compression

## 🖋Citation If this repository is useful for you, please cite as: ``` @misc{llavamini, title={LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token}, author={Shaolei Zhang and Qingkai Fang and Zhe Yang and Yang Feng}, year={2025}, eprint={2501.03895}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2501.03895}, } ``` If you have any questions, please feel free to submit an issue or contact `zhangshaolei20z@ict.ac.cn`.