expert-16 / checkpoint-600 /trainer_state.json
Farouk
Training in progress, step 600
14b8335
raw
history blame
18.7 kB
{
"best_metric": 0.7616425156593323,
"best_model_checkpoint": "experts/expert-16/checkpoint-600",
"epoch": 0.19011406844106463,
"global_step": 600,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.8331,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8289,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.9038,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8491,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8155,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7896,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7835,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8827,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.861,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7879,
"step": 100
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.803,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8212,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8075,
"step": 130
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.9263,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7969,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7883,
"step": 160
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7582,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8095,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8614,
"step": 190
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8674,
"step": 200
},
{
"epoch": 0.06,
"eval_loss": 0.7774001359939575,
"eval_runtime": 149.8878,
"eval_samples_per_second": 6.672,
"eval_steps_per_second": 3.336,
"step": 200
},
{
"epoch": 0.06,
"mmlu_eval_accuracy": 0.4759538024775667,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.7142857142857143,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.6666666666666666,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.463768115942029,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.619096915108728,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8312,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8465,
"step": 220
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8433,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8223,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7884,
"step": 250
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8233,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.812,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8342,
"step": 280
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8316,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7984,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7821,
"step": 310
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7715,
"step": 320
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7675,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.793,
"step": 340
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8223,
"step": 350
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7916,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.8094,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7655,
"step": 380
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.7868,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.7983,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.7662714719772339,
"eval_runtime": 149.8239,
"eval_samples_per_second": 6.675,
"eval_steps_per_second": 3.337,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.47563130411411997,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.18181818181818182,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.7692307692307693,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.5217391304347826,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.474700499685875,
"step": 400
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8181,
"step": 410
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8442,
"step": 420
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8194,
"step": 430
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8192,
"step": 440
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8265,
"step": 450
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8383,
"step": 460
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8375,
"step": 470
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.808,
"step": 480
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8209,
"step": 490
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8144,
"step": 500
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8465,
"step": 510
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8437,
"step": 520
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8091,
"step": 530
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8501,
"step": 540
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.7731,
"step": 550
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7826,
"step": 560
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.749,
"step": 570
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7947,
"step": 580
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.736,
"step": 590
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.7971,
"step": 600
},
{
"epoch": 0.19,
"eval_loss": 0.7616425156593323,
"eval_runtime": 149.4328,
"eval_samples_per_second": 6.692,
"eval_steps_per_second": 3.346,
"step": 600
},
{
"epoch": 0.19,
"mmlu_eval_accuracy": 0.4814898904813968,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.7142857142857143,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.36363636363636365,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.07142857142857142,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.9090909090909091,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4883720930232558,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.11764705882352941,
"mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.88,
"mmlu_eval_accuracy_medical_genetics": 0.9090909090909091,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.5483870967741935,
"mmlu_eval_accuracy_professional_psychology": 0.5072463768115942,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.5487773687658983,
"step": 600
}
],
"max_steps": 10000,
"num_train_epochs": 4,
"total_flos": 1.8349203965037773e+17,
"trial_name": null,
"trial_params": null
}