diff --git "a/checkpoint-3400/trainer_state.json" "b/checkpoint-3400/trainer_state.json" new file mode 100644--- /dev/null +++ "b/checkpoint-3400/trainer_state.json" @@ -0,0 +1,3263 @@ +{ + "best_metric": 0.7639025449752808, + "best_model_checkpoint": "./output_v2/7b_cluster022_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_022/checkpoint-2800", + "epoch": 1.199400299850075, + "global_step": 3400, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 0.0002, + "loss": 0.8325, + "step": 10 + }, + { + "epoch": 0.01, + "learning_rate": 0.0002, + "loss": 0.8202, + "step": 20 + }, + { + "epoch": 0.01, + "learning_rate": 0.0002, + "loss": 0.7466, + "step": 30 + }, + { + "epoch": 0.01, + "learning_rate": 0.0002, + "loss": 0.7549, + "step": 40 + }, + { + "epoch": 0.02, + "learning_rate": 0.0002, + "loss": 0.7569, + "step": 50 + }, + { + "epoch": 0.02, + "learning_rate": 0.0002, + "loss": 0.7691, + "step": 60 + }, + { + "epoch": 0.02, + "learning_rate": 0.0002, + "loss": 0.744, + "step": 70 + }, + { + "epoch": 0.03, + "learning_rate": 0.0002, + "loss": 0.7708, + "step": 80 + }, + { + "epoch": 0.03, + "learning_rate": 0.0002, + "loss": 0.8071, + "step": 90 + }, + { + "epoch": 0.04, + "learning_rate": 0.0002, + "loss": 0.7303, + "step": 100 + }, + { + "epoch": 0.04, + "learning_rate": 0.0002, + "loss": 0.6861, + "step": 110 + }, + { + "epoch": 0.04, + "learning_rate": 0.0002, + "loss": 0.7592, + "step": 120 + }, + { + "epoch": 0.05, + "learning_rate": 0.0002, + "loss": 0.7361, + "step": 130 + }, + { + "epoch": 0.05, + "learning_rate": 0.0002, + "loss": 0.76, + "step": 140 + }, + { + "epoch": 0.05, + "learning_rate": 0.0002, + "loss": 0.7617, + "step": 150 + }, + { + "epoch": 0.06, + "learning_rate": 0.0002, + "loss": 0.7073, + "step": 160 + }, + { + "epoch": 0.06, + "learning_rate": 0.0002, + "loss": 0.7581, + "step": 170 + }, + { + "epoch": 0.06, + "learning_rate": 0.0002, + "loss": 0.7636, + "step": 180 + }, + { + "epoch": 0.07, + "learning_rate": 0.0002, + "loss": 0.7712, + "step": 190 + }, + { + "epoch": 0.07, + "learning_rate": 0.0002, + "loss": 0.7547, + "step": 200 + }, + { + "epoch": 0.07, + "eval_loss": 0.8007758259773254, + "eval_runtime": 185.4331, + "eval_samples_per_second": 5.393, + "eval_steps_per_second": 2.696, + "step": 200 + }, + { + "epoch": 0.07, + "mmlu_eval_accuracy": 0.4659766842502547, + "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, + "mmlu_eval_accuracy_anatomy": 0.6428571428571429, + "mmlu_eval_accuracy_astronomy": 0.375, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293, + "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.34375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_world_history": 0.5, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.7692307692307693, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, + "mmlu_eval_accuracy_management": 0.7272727272727273, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5757575757575758, + "mmlu_eval_accuracy_philosophy": 0.5, + "mmlu_eval_accuracy_prehistory": 0.5142857142857142, + "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, + "mmlu_eval_accuracy_professional_law": 0.3411764705882353, + "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, + "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, + "mmlu_eval_accuracy_public_relations": 0.5833333333333334, + "mmlu_eval_accuracy_security_studies": 0.5185185185185185, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.3888888888888889, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.0009409290575484, + "step": 200 + }, + { + "epoch": 0.07, + "learning_rate": 0.0002, + "loss": 0.7814, + "step": 210 + }, + { + "epoch": 0.08, + "learning_rate": 0.0002, + "loss": 0.7313, + "step": 220 + }, + { + "epoch": 0.08, + "learning_rate": 0.0002, + "loss": 0.7217, + "step": 230 + }, + { + "epoch": 0.08, + "learning_rate": 0.0002, + "loss": 0.7299, + "step": 240 + }, + { + "epoch": 0.09, + "learning_rate": 0.0002, + "loss": 0.7229, + "step": 250 + }, + { + "epoch": 0.09, + "learning_rate": 0.0002, + "loss": 0.7271, + "step": 260 + }, + { + "epoch": 0.1, + "learning_rate": 0.0002, + "loss": 0.7253, + "step": 270 + }, + { + "epoch": 0.1, + "learning_rate": 0.0002, + "loss": 0.7371, + "step": 280 + }, + { + "epoch": 0.1, + "learning_rate": 0.0002, + "loss": 0.7434, + "step": 290 + }, + { + "epoch": 0.11, + "learning_rate": 0.0002, + "loss": 0.6741, + "step": 300 + }, + { + "epoch": 0.11, + "learning_rate": 0.0002, + "loss": 0.7386, + "step": 310 + }, + { + "epoch": 0.11, + "learning_rate": 0.0002, + "loss": 0.7441, + "step": 320 + }, + { + "epoch": 0.12, + "learning_rate": 0.0002, + "loss": 0.7243, + "step": 330 + }, + { + "epoch": 0.12, + "learning_rate": 0.0002, + "loss": 0.7534, + "step": 340 + }, + { + "epoch": 0.12, + "learning_rate": 0.0002, + "loss": 0.7187, + "step": 350 + }, + { + "epoch": 0.13, + "learning_rate": 0.0002, + "loss": 0.7508, + "step": 360 + }, + { + "epoch": 0.13, + "learning_rate": 0.0002, + "loss": 0.7597, + "step": 370 + }, + { + "epoch": 0.13, + "learning_rate": 0.0002, + "loss": 0.7398, + "step": 380 + }, + { + "epoch": 0.14, + "learning_rate": 0.0002, + "loss": 0.6924, + "step": 390 + }, + { + "epoch": 0.14, + "learning_rate": 0.0002, + "loss": 0.7035, + "step": 400 + }, + { + "epoch": 0.14, + "eval_loss": 0.7900036573410034, + "eval_runtime": 188.9686, + "eval_samples_per_second": 5.292, + "eval_steps_per_second": 2.646, + "step": 400 + }, + { + "epoch": 0.14, + "mmlu_eval_accuracy": 0.45327850420813054, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5714285714285714, + "mmlu_eval_accuracy_astronomy": 0.5625, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.0, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.2727272727272727, + "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.4, + "mmlu_eval_accuracy_high_school_biology": 0.34375, + "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, + "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, + "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, + "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, + "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, + "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_world_history": 0.5, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.45454545454545453, + "mmlu_eval_accuracy_marketing": 0.76, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.5, + "mmlu_eval_accuracy_prehistory": 0.5142857142857142, + "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, + "mmlu_eval_accuracy_professional_law": 0.35294117647058826, + "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, + "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, + "mmlu_eval_accuracy_public_relations": 0.6666666666666666, + "mmlu_eval_accuracy_security_studies": 0.5185185185185185, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, + "mmlu_eval_accuracy_virology": 0.4444444444444444, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.0370562722026213, + "step": 400 + }, + { + "epoch": 0.14, + "learning_rate": 0.0002, + "loss": 0.7245, + "step": 410 + }, + { + "epoch": 0.15, + "learning_rate": 0.0002, + "loss": 0.8027, + "step": 420 + }, + { + "epoch": 0.15, + "learning_rate": 0.0002, + "loss": 0.7174, + "step": 430 + }, + { + "epoch": 0.16, + "learning_rate": 0.0002, + "loss": 0.7471, + "step": 440 + }, + { + "epoch": 0.16, + "learning_rate": 0.0002, + "loss": 0.7263, + "step": 450 + }, + { + "epoch": 0.16, + "learning_rate": 0.0002, + "loss": 0.7001, + "step": 460 + }, + { + "epoch": 0.17, + "learning_rate": 0.0002, + "loss": 0.7767, + "step": 470 + }, + { + "epoch": 0.17, + "learning_rate": 0.0002, + "loss": 0.7406, + "step": 480 + }, + { + "epoch": 0.17, + "learning_rate": 0.0002, + "loss": 0.7371, + "step": 490 + }, + { + "epoch": 0.18, + "learning_rate": 0.0002, + "loss": 0.7152, + "step": 500 + }, + { + "epoch": 0.18, + "learning_rate": 0.0002, + "loss": 0.746, + "step": 510 + }, + { + "epoch": 0.18, + "learning_rate": 0.0002, + "loss": 0.7178, + "step": 520 + }, + { + "epoch": 0.19, + "learning_rate": 0.0002, + "loss": 0.7056, + "step": 530 + }, + { + "epoch": 0.19, + "learning_rate": 0.0002, + "loss": 0.6961, + "step": 540 + }, + { + "epoch": 0.19, + "learning_rate": 0.0002, + "loss": 0.673, + "step": 550 + }, + { + "epoch": 0.2, + "learning_rate": 0.0002, + "loss": 0.7508, + "step": 560 + }, + { + "epoch": 0.2, + "learning_rate": 0.0002, + "loss": 0.7508, + "step": 570 + }, + { + "epoch": 0.2, + "learning_rate": 0.0002, + "loss": 0.7122, + "step": 580 + }, + { + "epoch": 0.21, + "learning_rate": 0.0002, + "loss": 0.7154, + "step": 590 + }, + { + "epoch": 0.21, + "learning_rate": 0.0002, + "loss": 0.7587, + "step": 600 + }, + { + "epoch": 0.21, + "eval_loss": 0.785829484462738, + "eval_runtime": 189.436, + "eval_samples_per_second": 5.279, + "eval_steps_per_second": 2.639, + "step": 600 + }, + { + "epoch": 0.21, + "mmlu_eval_accuracy": 0.4748863496985387, + "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, + "mmlu_eval_accuracy_anatomy": 0.5714285714285714, + "mmlu_eval_accuracy_astronomy": 0.5625, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.375, + "mmlu_eval_accuracy_college_chemistry": 0.25, + "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, + "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, + "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_world_history": 0.5, + "mmlu_eval_accuracy_human_aging": 0.7391304347826086, + "mmlu_eval_accuracy_human_sexuality": 0.5, + "mmlu_eval_accuracy_international_law": 0.7692307692307693, + "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.76, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, + "mmlu_eval_accuracy_moral_scenarios": 0.23, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.47058823529411764, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, + "mmlu_eval_accuracy_professional_law": 0.3411764705882353, + "mmlu_eval_accuracy_professional_medicine": 0.3225806451612903, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.5833333333333334, + "mmlu_eval_accuracy_security_studies": 0.5925925925925926, + "mmlu_eval_accuracy_sociology": 0.6363636363636364, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.4444444444444444, + "mmlu_eval_accuracy_world_religions": 0.7894736842105263, + "mmlu_loss": 0.9638749470559798, + "step": 600 + }, + { + "epoch": 0.22, + "learning_rate": 0.0002, + "loss": 0.8107, + "step": 610 + }, + { + "epoch": 0.22, + "learning_rate": 0.0002, + "loss": 0.7193, + "step": 620 + }, + { + "epoch": 0.22, + "learning_rate": 0.0002, + "loss": 0.7275, + "step": 630 + }, + { + "epoch": 0.23, + "learning_rate": 0.0002, + "loss": 0.7553, + "step": 640 + }, + { + "epoch": 0.23, + "learning_rate": 0.0002, + "loss": 0.7385, + "step": 650 + }, + { + "epoch": 0.23, + "learning_rate": 0.0002, + "loss": 0.7071, + "step": 660 + }, + { + "epoch": 0.24, + "learning_rate": 0.0002, + "loss": 0.7395, + "step": 670 + }, + { + "epoch": 0.24, + "learning_rate": 0.0002, + "loss": 0.7512, + "step": 680 + }, + { + "epoch": 0.24, + "learning_rate": 0.0002, + "loss": 0.7063, + "step": 690 + }, + { + "epoch": 0.25, + "learning_rate": 0.0002, + "loss": 0.723, + "step": 700 + }, + { + "epoch": 0.25, + "learning_rate": 0.0002, + "loss": 0.7068, + "step": 710 + }, + { + "epoch": 0.25, + "learning_rate": 0.0002, + "loss": 0.7211, + "step": 720 + }, + { + "epoch": 0.26, + "learning_rate": 0.0002, + "loss": 0.7123, + "step": 730 + }, + { + "epoch": 0.26, + "learning_rate": 0.0002, + "loss": 0.6394, + "step": 740 + }, + { + "epoch": 0.26, + "learning_rate": 0.0002, + "loss": 0.679, + "step": 750 + }, + { + "epoch": 0.27, + "learning_rate": 0.0002, + "loss": 0.7402, + "step": 760 + }, + { + "epoch": 0.27, + "learning_rate": 0.0002, + "loss": 0.7634, + "step": 770 + }, + { + "epoch": 0.28, + "learning_rate": 0.0002, + "loss": 0.7253, + "step": 780 + }, + { + "epoch": 0.28, + "learning_rate": 0.0002, + "loss": 0.7497, + "step": 790 + }, + { + "epoch": 0.28, + "learning_rate": 0.0002, + "loss": 0.7008, + "step": 800 + }, + { + "epoch": 0.28, + "eval_loss": 0.7810184359550476, + "eval_runtime": 187.2684, + "eval_samples_per_second": 5.34, + "eval_steps_per_second": 2.67, + "step": 800 + }, + { + "epoch": 0.28, + "mmlu_eval_accuracy": 0.46145585660156935, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5714285714285714, + "mmlu_eval_accuracy_astronomy": 0.4375, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.2727272727272727, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, + "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, + "mmlu_eval_accuracy_international_law": 0.7692307692307693, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, + "mmlu_eval_accuracy_management": 0.5454545454545454, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, + "mmlu_eval_accuracy_moral_disputes": 0.5, + "mmlu_eval_accuracy_moral_scenarios": 0.23, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.47058823529411764, + "mmlu_eval_accuracy_prehistory": 0.5142857142857142, + "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, + "mmlu_eval_accuracy_professional_law": 0.3352941176470588, + "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.5833333333333334, + "mmlu_eval_accuracy_security_studies": 0.48148148148148145, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.4444444444444444, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.074835775843177, + "step": 800 + }, + { + "epoch": 0.29, + "learning_rate": 0.0002, + "loss": 0.7028, + "step": 810 + }, + { + "epoch": 0.29, + "learning_rate": 0.0002, + "loss": 0.7465, + "step": 820 + }, + { + "epoch": 0.29, + "learning_rate": 0.0002, + "loss": 0.7717, + "step": 830 + }, + { + "epoch": 0.3, + "learning_rate": 0.0002, + "loss": 0.7256, + "step": 840 + }, + { + "epoch": 0.3, + "learning_rate": 0.0002, + "loss": 0.776, + "step": 850 + }, + { + "epoch": 0.3, + "learning_rate": 0.0002, + "loss": 0.7521, + "step": 860 + }, + { + "epoch": 0.31, + "learning_rate": 0.0002, + "loss": 0.7118, + "step": 870 + }, + { + "epoch": 0.31, + "learning_rate": 0.0002, + "loss": 0.6725, + "step": 880 + }, + { + "epoch": 0.31, + "learning_rate": 0.0002, + "loss": 0.6865, + "step": 890 + }, + { + "epoch": 0.32, + "learning_rate": 0.0002, + "loss": 0.7, + "step": 900 + }, + { + "epoch": 0.32, + "learning_rate": 0.0002, + "loss": 0.7387, + "step": 910 + }, + { + "epoch": 0.32, + "learning_rate": 0.0002, + "loss": 0.7117, + "step": 920 + }, + { + "epoch": 0.33, + "learning_rate": 0.0002, + "loss": 0.686, + "step": 930 + }, + { + "epoch": 0.33, + "learning_rate": 0.0002, + "loss": 0.7106, + "step": 940 + }, + { + "epoch": 0.34, + "learning_rate": 0.0002, + "loss": 0.7004, + "step": 950 + }, + { + "epoch": 0.34, + "learning_rate": 0.0002, + "loss": 0.7376, + "step": 960 + }, + { + "epoch": 0.34, + "learning_rate": 0.0002, + "loss": 0.7226, + "step": 970 + }, + { + "epoch": 0.35, + "learning_rate": 0.0002, + "loss": 0.7396, + "step": 980 + }, + { + "epoch": 0.35, + "learning_rate": 0.0002, + "loss": 0.7194, + "step": 990 + }, + { + "epoch": 0.35, + "learning_rate": 0.0002, + "loss": 0.7068, + "step": 1000 + }, + { + "epoch": 0.35, + "eval_loss": 0.7785887718200684, + "eval_runtime": 187.1264, + "eval_samples_per_second": 5.344, + "eval_steps_per_second": 2.672, + "step": 1000 + }, + { + "epoch": 0.35, + "mmlu_eval_accuracy": 0.4578914859636893, + "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, + "mmlu_eval_accuracy_anatomy": 0.5714285714285714, + "mmlu_eval_accuracy_astronomy": 0.375, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.4, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, + "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.75, + "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, + "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, + "mmlu_eval_accuracy_high_school_world_history": 0.5, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, + "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.5, + "mmlu_eval_accuracy_prehistory": 0.5142857142857142, + "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, + "mmlu_eval_accuracy_professional_law": 0.3411764705882353, + "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, + "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, + "mmlu_eval_accuracy_public_relations": 0.6666666666666666, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.7272727272727273, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.3888888888888889, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 0.9906338841578979, + "step": 1000 + }, + { + "epoch": 0.36, + "learning_rate": 0.0002, + "loss": 0.7622, + "step": 1010 + }, + { + "epoch": 0.36, + "learning_rate": 0.0002, + "loss": 0.7039, + "step": 1020 + }, + { + "epoch": 0.36, + "learning_rate": 0.0002, + "loss": 0.7078, + "step": 1030 + }, + { + "epoch": 0.37, + "learning_rate": 0.0002, + "loss": 0.7504, + "step": 1040 + }, + { + "epoch": 0.37, + "learning_rate": 0.0002, + "loss": 0.7543, + "step": 1050 + }, + { + "epoch": 0.37, + "learning_rate": 0.0002, + "loss": 0.7081, + "step": 1060 + }, + { + "epoch": 0.38, + "learning_rate": 0.0002, + "loss": 0.7193, + "step": 1070 + }, + { + "epoch": 0.38, + "learning_rate": 0.0002, + "loss": 0.7138, + "step": 1080 + }, + { + "epoch": 0.38, + "learning_rate": 0.0002, + "loss": 0.7277, + "step": 1090 + }, + { + "epoch": 0.39, + "learning_rate": 0.0002, + "loss": 0.7183, + "step": 1100 + }, + { + "epoch": 0.39, + "learning_rate": 0.0002, + "loss": 0.6955, + "step": 1110 + }, + { + "epoch": 0.4, + "learning_rate": 0.0002, + "loss": 0.6558, + "step": 1120 + }, + { + "epoch": 0.4, + "learning_rate": 0.0002, + "loss": 0.7213, + "step": 1130 + }, + { + "epoch": 0.4, + "learning_rate": 0.0002, + "loss": 0.7377, + "step": 1140 + }, + { + "epoch": 0.41, + "learning_rate": 0.0002, + "loss": 0.7591, + "step": 1150 + }, + { + "epoch": 0.41, + "learning_rate": 0.0002, + "loss": 0.7336, + "step": 1160 + }, + { + "epoch": 0.41, + "learning_rate": 0.0002, + "loss": 0.717, + "step": 1170 + }, + { + "epoch": 0.42, + "learning_rate": 0.0002, + "loss": 0.6958, + "step": 1180 + }, + { + "epoch": 0.42, + "learning_rate": 0.0002, + "loss": 0.6692, + "step": 1190 + }, + { + "epoch": 0.42, + "learning_rate": 0.0002, + "loss": 0.6991, + "step": 1200 + }, + { + "epoch": 0.42, + "eval_loss": 0.7757567167282104, + "eval_runtime": 186.5318, + "eval_samples_per_second": 5.361, + "eval_steps_per_second": 2.681, + "step": 1200 + }, + { + "epoch": 0.42, + "mmlu_eval_accuracy": 0.4543617194438492, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5625, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.0, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.375, + "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, + "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, + "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.75, + "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, + "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.68, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.6060606060606061, + "mmlu_eval_accuracy_philosophy": 0.47058823529411764, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, + "mmlu_eval_accuracy_professional_law": 0.3352941176470588, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, + "mmlu_eval_accuracy_public_relations": 0.5, + "mmlu_eval_accuracy_security_studies": 0.5185185185185185, + "mmlu_eval_accuracy_sociology": 0.5909090909090909, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.4444444444444444, + "mmlu_eval_accuracy_world_religions": 0.6842105263157895, + "mmlu_loss": 1.0648847781608062, + "step": 1200 + }, + { + "epoch": 0.43, + "learning_rate": 0.0002, + "loss": 0.7593, + "step": 1210 + }, + { + "epoch": 0.43, + "learning_rate": 0.0002, + "loss": 0.6822, + "step": 1220 + }, + { + "epoch": 0.43, + "learning_rate": 0.0002, + "loss": 0.699, + "step": 1230 + }, + { + "epoch": 0.44, + "learning_rate": 0.0002, + "loss": 0.7015, + "step": 1240 + }, + { + "epoch": 0.44, + "learning_rate": 0.0002, + "loss": 0.6901, + "step": 1250 + }, + { + "epoch": 0.44, + "learning_rate": 0.0002, + "loss": 0.7406, + "step": 1260 + }, + { + "epoch": 0.45, + "learning_rate": 0.0002, + "loss": 0.6947, + "step": 1270 + }, + { + "epoch": 0.45, + "learning_rate": 0.0002, + "loss": 0.734, + "step": 1280 + }, + { + "epoch": 0.46, + "learning_rate": 0.0002, + "loss": 0.7335, + "step": 1290 + }, + { + "epoch": 0.46, + "learning_rate": 0.0002, + "loss": 0.7067, + "step": 1300 + }, + { + "epoch": 0.46, + "learning_rate": 0.0002, + "loss": 0.7627, + "step": 1310 + }, + { + "epoch": 0.47, + "learning_rate": 0.0002, + "loss": 0.676, + "step": 1320 + }, + { + "epoch": 0.47, + "learning_rate": 0.0002, + "loss": 0.7385, + "step": 1330 + }, + { + "epoch": 0.47, + "learning_rate": 0.0002, + "loss": 0.6752, + "step": 1340 + }, + { + "epoch": 0.48, + "learning_rate": 0.0002, + "loss": 0.7385, + "step": 1350 + }, + { + "epoch": 0.48, + "learning_rate": 0.0002, + "loss": 0.7122, + "step": 1360 + }, + { + "epoch": 0.48, + "learning_rate": 0.0002, + "loss": 0.6792, + "step": 1370 + }, + { + "epoch": 0.49, + "learning_rate": 0.0002, + "loss": 0.6761, + "step": 1380 + }, + { + "epoch": 0.49, + "learning_rate": 0.0002, + "loss": 0.7069, + "step": 1390 + }, + { + "epoch": 0.49, + "learning_rate": 0.0002, + "loss": 0.7067, + "step": 1400 + }, + { + "epoch": 0.49, + "eval_loss": 0.7749121189117432, + "eval_runtime": 186.6278, + "eval_samples_per_second": 5.358, + "eval_steps_per_second": 2.679, + "step": 1400 + }, + { + "epoch": 0.49, + "mmlu_eval_accuracy": 0.4656455181567258, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.375, + "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, + "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, + "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.23, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.5, + "mmlu_eval_accuracy_prehistory": 0.4, + "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, + "mmlu_eval_accuracy_professional_law": 0.3235294117647059, + "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, + "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, + "mmlu_eval_accuracy_public_relations": 0.5833333333333334, + "mmlu_eval_accuracy_security_studies": 0.48148148148148145, + "mmlu_eval_accuracy_sociology": 0.5909090909090909, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.3888888888888889, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.0056204651883627, + "step": 1400 + }, + { + "epoch": 0.5, + "learning_rate": 0.0002, + "loss": 0.672, + "step": 1410 + }, + { + "epoch": 0.5, + "learning_rate": 0.0002, + "loss": 0.6638, + "step": 1420 + }, + { + "epoch": 0.5, + "learning_rate": 0.0002, + "loss": 0.7447, + "step": 1430 + }, + { + "epoch": 0.51, + "learning_rate": 0.0002, + "loss": 0.703, + "step": 1440 + }, + { + "epoch": 0.51, + "learning_rate": 0.0002, + "loss": 0.6834, + "step": 1450 + }, + { + "epoch": 0.52, + "learning_rate": 0.0002, + "loss": 0.7059, + "step": 1460 + }, + { + "epoch": 0.52, + "learning_rate": 0.0002, + "loss": 0.7046, + "step": 1470 + }, + { + "epoch": 0.52, + "learning_rate": 0.0002, + "loss": 0.7405, + "step": 1480 + }, + { + "epoch": 0.53, + "learning_rate": 0.0002, + "loss": 0.6708, + "step": 1490 + }, + { + "epoch": 0.53, + "learning_rate": 0.0002, + "loss": 0.7534, + "step": 1500 + }, + { + "epoch": 0.53, + "learning_rate": 0.0002, + "loss": 0.7192, + "step": 1510 + }, + { + "epoch": 0.54, + "learning_rate": 0.0002, + "loss": 0.7252, + "step": 1520 + }, + { + "epoch": 0.54, + "learning_rate": 0.0002, + "loss": 0.6876, + "step": 1530 + }, + { + "epoch": 0.54, + "learning_rate": 0.0002, + "loss": 0.6603, + "step": 1540 + }, + { + "epoch": 0.55, + "learning_rate": 0.0002, + "loss": 0.6957, + "step": 1550 + }, + { + "epoch": 0.55, + "learning_rate": 0.0002, + "loss": 0.7745, + "step": 1560 + }, + { + "epoch": 0.55, + "learning_rate": 0.0002, + "loss": 0.7035, + "step": 1570 + }, + { + "epoch": 0.56, + "learning_rate": 0.0002, + "loss": 0.7381, + "step": 1580 + }, + { + "epoch": 0.56, + "learning_rate": 0.0002, + "loss": 0.6919, + "step": 1590 + }, + { + "epoch": 0.56, + "learning_rate": 0.0002, + "loss": 0.6665, + "step": 1600 + }, + { + "epoch": 0.56, + "eval_loss": 0.7732749581336975, + "eval_runtime": 189.0558, + "eval_samples_per_second": 5.289, + "eval_steps_per_second": 2.645, + "step": 1600 + }, + { + "epoch": 0.56, + "mmlu_eval_accuracy": 0.4643913679545894, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.3125, + "mmlu_eval_accuracy_college_chemistry": 0.375, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.25, + "mmlu_eval_accuracy_electrical_engineering": 0.4375, + "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, + "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, + "mmlu_eval_accuracy_global_facts": 0.6, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, + "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6521739130434783, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.68, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, + "mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5757575757575758, + "mmlu_eval_accuracy_philosophy": 0.47058823529411764, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, + "mmlu_eval_accuracy_professional_law": 0.32941176470588235, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, + "mmlu_eval_accuracy_public_relations": 0.5, + "mmlu_eval_accuracy_security_studies": 0.5185185185185185, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.3888888888888889, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.211870277013542, + "step": 1600 + }, + { + "epoch": 0.57, + "learning_rate": 0.0002, + "loss": 0.6885, + "step": 1610 + }, + { + "epoch": 0.57, + "learning_rate": 0.0002, + "loss": 0.6468, + "step": 1620 + }, + { + "epoch": 0.58, + "learning_rate": 0.0002, + "loss": 0.6762, + "step": 1630 + }, + { + "epoch": 0.58, + "learning_rate": 0.0002, + "loss": 0.7359, + "step": 1640 + }, + { + "epoch": 0.58, + "learning_rate": 0.0002, + "loss": 0.7327, + "step": 1650 + }, + { + "epoch": 0.59, + "learning_rate": 0.0002, + "loss": 0.6205, + "step": 1660 + }, + { + "epoch": 0.59, + "learning_rate": 0.0002, + "loss": 0.7413, + "step": 1670 + }, + { + "epoch": 0.59, + "learning_rate": 0.0002, + "loss": 0.7164, + "step": 1680 + }, + { + "epoch": 0.6, + "learning_rate": 0.0002, + "loss": 0.6865, + "step": 1690 + }, + { + "epoch": 0.6, + "learning_rate": 0.0002, + "loss": 0.6713, + "step": 1700 + }, + { + "epoch": 0.6, + "learning_rate": 0.0002, + "loss": 0.6729, + "step": 1710 + }, + { + "epoch": 0.61, + "learning_rate": 0.0002, + "loss": 0.6604, + "step": 1720 + }, + { + "epoch": 0.61, + "learning_rate": 0.0002, + "loss": 0.6889, + "step": 1730 + }, + { + "epoch": 0.61, + "learning_rate": 0.0002, + "loss": 0.726, + "step": 1740 + }, + { + "epoch": 0.62, + "learning_rate": 0.0002, + "loss": 0.7183, + "step": 1750 + }, + { + "epoch": 0.62, + "learning_rate": 0.0002, + "loss": 0.6994, + "step": 1760 + }, + { + "epoch": 0.62, + "learning_rate": 0.0002, + "loss": 0.6921, + "step": 1770 + }, + { + "epoch": 0.63, + "learning_rate": 0.0002, + "loss": 0.6768, + "step": 1780 + }, + { + "epoch": 0.63, + "learning_rate": 0.0002, + "loss": 0.7288, + "step": 1790 + }, + { + "epoch": 0.63, + "learning_rate": 0.0002, + "loss": 0.6793, + "step": 1800 + }, + { + "epoch": 0.63, + "eval_loss": 0.769940197467804, + "eval_runtime": 188.6588, + "eval_samples_per_second": 5.301, + "eval_steps_per_second": 2.65, + "step": 1800 + }, + { + "epoch": 0.63, + "mmlu_eval_accuracy": 0.4624357023236349, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.3125, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.45454545454545453, + "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.4375, + "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.6, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, + "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, + "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.5, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.4411764705882353, + "mmlu_eval_accuracy_prehistory": 0.4857142857142857, + "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, + "mmlu_eval_accuracy_professional_law": 0.3176470588235294, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, + "mmlu_eval_accuracy_public_relations": 0.4166666666666667, + "mmlu_eval_accuracy_security_studies": 0.5185185185185185, + "mmlu_eval_accuracy_sociology": 0.7272727272727273, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.4444444444444444, + "mmlu_eval_accuracy_world_religions": 0.6842105263157895, + "mmlu_loss": 1.171973392095018, + "step": 1800 + }, + { + "epoch": 0.64, + "learning_rate": 0.0002, + "loss": 0.7021, + "step": 1810 + }, + { + "epoch": 0.64, + "learning_rate": 0.0002, + "loss": 0.6696, + "step": 1820 + }, + { + "epoch": 0.65, + "learning_rate": 0.0002, + "loss": 0.7099, + "step": 1830 + }, + { + "epoch": 0.65, + "learning_rate": 0.0002, + "loss": 0.7604, + "step": 1840 + }, + { + "epoch": 0.65, + "learning_rate": 0.0002, + "loss": 0.6885, + "step": 1850 + }, + { + "epoch": 0.66, + "learning_rate": 0.0002, + "loss": 0.6649, + "step": 1860 + }, + { + "epoch": 0.66, + "learning_rate": 0.0002, + "loss": 0.7325, + "step": 1870 + }, + { + "epoch": 0.66, + "learning_rate": 0.0002, + "loss": 0.6309, + "step": 1880 + }, + { + "epoch": 0.67, + "learning_rate": 0.0002, + "loss": 0.7024, + "step": 1890 + }, + { + "epoch": 0.67, + "learning_rate": 0.0002, + "loss": 0.6719, + "step": 1900 + }, + { + "epoch": 0.67, + "learning_rate": 0.0002, + "loss": 0.683, + "step": 1910 + }, + { + "epoch": 0.68, + "learning_rate": 0.0002, + "loss": 0.6862, + "step": 1920 + }, + { + "epoch": 0.68, + "learning_rate": 0.0002, + "loss": 0.7632, + "step": 1930 + }, + { + "epoch": 0.68, + "learning_rate": 0.0002, + "loss": 0.7087, + "step": 1940 + }, + { + "epoch": 0.69, + "learning_rate": 0.0002, + "loss": 0.6527, + "step": 1950 + }, + { + "epoch": 0.69, + "learning_rate": 0.0002, + "loss": 0.7284, + "step": 1960 + }, + { + "epoch": 0.69, + "learning_rate": 0.0002, + "loss": 0.6579, + "step": 1970 + }, + { + "epoch": 0.7, + "learning_rate": 0.0002, + "loss": 0.7191, + "step": 1980 + }, + { + "epoch": 0.7, + "learning_rate": 0.0002, + "loss": 0.6849, + "step": 1990 + }, + { + "epoch": 0.71, + "learning_rate": 0.0002, + "loss": 0.7375, + "step": 2000 + }, + { + "epoch": 0.71, + "eval_loss": 0.769704282283783, + "eval_runtime": 188.6001, + "eval_samples_per_second": 5.302, + "eval_steps_per_second": 2.651, + "step": 2000 + }, + { + "epoch": 0.71, + "mmlu_eval_accuracy": 0.4586122911114159, + "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5625, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.4, + "mmlu_eval_accuracy_high_school_biology": 0.4375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, + "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, + "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, + "mmlu_eval_accuracy_international_law": 0.7692307692307693, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, + "mmlu_eval_accuracy_management": 0.7272727272727273, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, + "mmlu_eval_accuracy_moral_disputes": 0.5, + "mmlu_eval_accuracy_moral_scenarios": 0.23, + "mmlu_eval_accuracy_nutrition": 0.5757575757575758, + "mmlu_eval_accuracy_philosophy": 0.47058823529411764, + "mmlu_eval_accuracy_prehistory": 0.42857142857142855, + "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, + "mmlu_eval_accuracy_professional_law": 0.3235294117647059, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, + "mmlu_eval_accuracy_public_relations": 0.5, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.4444444444444444, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.1570235493911465, + "step": 2000 + }, + { + "epoch": 0.71, + "learning_rate": 0.0002, + "loss": 0.6536, + "step": 2010 + }, + { + "epoch": 0.71, + "learning_rate": 0.0002, + "loss": 0.6591, + "step": 2020 + }, + { + "epoch": 0.72, + "learning_rate": 0.0002, + "loss": 0.7033, + "step": 2030 + }, + { + "epoch": 0.72, + "learning_rate": 0.0002, + "loss": 0.7312, + "step": 2040 + }, + { + "epoch": 0.72, + "learning_rate": 0.0002, + "loss": 0.7322, + "step": 2050 + }, + { + "epoch": 0.73, + "learning_rate": 0.0002, + "loss": 0.7249, + "step": 2060 + }, + { + "epoch": 0.73, + "learning_rate": 0.0002, + "loss": 0.7576, + "step": 2070 + }, + { + "epoch": 0.73, + "learning_rate": 0.0002, + "loss": 0.7499, + "step": 2080 + }, + { + "epoch": 0.74, + "learning_rate": 0.0002, + "loss": 0.6414, + "step": 2090 + }, + { + "epoch": 0.74, + "learning_rate": 0.0002, + "loss": 0.7201, + "step": 2100 + }, + { + "epoch": 0.74, + "learning_rate": 0.0002, + "loss": 0.6904, + "step": 2110 + }, + { + "epoch": 0.75, + "learning_rate": 0.0002, + "loss": 0.716, + "step": 2120 + }, + { + "epoch": 0.75, + "learning_rate": 0.0002, + "loss": 0.6923, + "step": 2130 + }, + { + "epoch": 0.75, + "learning_rate": 0.0002, + "loss": 0.7509, + "step": 2140 + }, + { + "epoch": 0.76, + "learning_rate": 0.0002, + "loss": 0.7288, + "step": 2150 + }, + { + "epoch": 0.76, + "learning_rate": 0.0002, + "loss": 0.6475, + "step": 2160 + }, + { + "epoch": 0.77, + "learning_rate": 0.0002, + "loss": 0.6637, + "step": 2170 + }, + { + "epoch": 0.77, + "learning_rate": 0.0002, + "loss": 0.7629, + "step": 2180 + }, + { + "epoch": 0.77, + "learning_rate": 0.0002, + "loss": 0.6744, + "step": 2190 + }, + { + "epoch": 0.78, + "learning_rate": 0.0002, + "loss": 0.7216, + "step": 2200 + }, + { + "epoch": 0.78, + "eval_loss": 0.7676219344139099, + "eval_runtime": 186.1144, + "eval_samples_per_second": 5.373, + "eval_steps_per_second": 2.687, + "step": 2200 + }, + { + "epoch": 0.78, + "mmlu_eval_accuracy": 0.4688920828630079, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.3125, + "mmlu_eval_accuracy_college_chemistry": 0.375, + "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.45454545454545453, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.375, + "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.65, + "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.7391304347826086, + "mmlu_eval_accuracy_human_sexuality": 0.5, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.6060606060606061, + "mmlu_eval_accuracy_philosophy": 0.4411764705882353, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, + "mmlu_eval_accuracy_professional_law": 0.3058823529411765, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.3333333333333333, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.7272727272727273, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.5555555555555556, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.2998772347564798, + "step": 2200 + }, + { + "epoch": 0.78, + "learning_rate": 0.0002, + "loss": 0.6914, + "step": 2210 + }, + { + "epoch": 0.78, + "learning_rate": 0.0002, + "loss": 0.6982, + "step": 2220 + }, + { + "epoch": 0.79, + "learning_rate": 0.0002, + "loss": 0.7011, + "step": 2230 + }, + { + "epoch": 0.79, + "learning_rate": 0.0002, + "loss": 0.7204, + "step": 2240 + }, + { + "epoch": 0.79, + "learning_rate": 0.0002, + "loss": 0.7029, + "step": 2250 + }, + { + "epoch": 0.8, + "learning_rate": 0.0002, + "loss": 0.6997, + "step": 2260 + }, + { + "epoch": 0.8, + "learning_rate": 0.0002, + "loss": 0.7481, + "step": 2270 + }, + { + "epoch": 0.8, + "learning_rate": 0.0002, + "loss": 0.6893, + "step": 2280 + }, + { + "epoch": 0.81, + "learning_rate": 0.0002, + "loss": 0.7546, + "step": 2290 + }, + { + "epoch": 0.81, + "learning_rate": 0.0002, + "loss": 0.6735, + "step": 2300 + }, + { + "epoch": 0.81, + "learning_rate": 0.0002, + "loss": 0.695, + "step": 2310 + }, + { + "epoch": 0.82, + "learning_rate": 0.0002, + "loss": 0.7171, + "step": 2320 + }, + { + "epoch": 0.82, + "learning_rate": 0.0002, + "loss": 0.6942, + "step": 2330 + }, + { + "epoch": 0.83, + "learning_rate": 0.0002, + "loss": 0.6779, + "step": 2340 + }, + { + "epoch": 0.83, + "learning_rate": 0.0002, + "loss": 0.7155, + "step": 2350 + }, + { + "epoch": 0.83, + "learning_rate": 0.0002, + "loss": 0.6583, + "step": 2360 + }, + { + "epoch": 0.84, + "learning_rate": 0.0002, + "loss": 0.6599, + "step": 2370 + }, + { + "epoch": 0.84, + "learning_rate": 0.0002, + "loss": 0.8043, + "step": 2380 + }, + { + "epoch": 0.84, + "learning_rate": 0.0002, + "loss": 0.6276, + "step": 2390 + }, + { + "epoch": 0.85, + "learning_rate": 0.0002, + "loss": 0.6935, + "step": 2400 + }, + { + "epoch": 0.85, + "eval_loss": 0.7674869298934937, + "eval_runtime": 186.2898, + "eval_samples_per_second": 5.368, + "eval_steps_per_second": 2.684, + "step": 2400 + }, + { + "epoch": 0.85, + "mmlu_eval_accuracy": 0.4624483299799015, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.4375, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.375, + "mmlu_eval_accuracy_college_chemistry": 0.25, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.45454545454545453, + "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.4375, + "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, + "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.40625, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, + "mmlu_eval_accuracy_high_school_european_history": 0.5, + "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, + "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.5833333333333334, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.76, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.6060606060606061, + "mmlu_eval_accuracy_philosophy": 0.5294117647058824, + "mmlu_eval_accuracy_prehistory": 0.4857142857142857, + "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, + "mmlu_eval_accuracy_professional_law": 0.3176470588235294, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, + "mmlu_eval_accuracy_public_relations": 0.3333333333333333, + "mmlu_eval_accuracy_security_studies": 0.5925925925925926, + "mmlu_eval_accuracy_sociology": 0.7272727272727273, + "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, + "mmlu_eval_accuracy_virology": 0.3888888888888889, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.1521158476722457, + "step": 2400 + }, + { + "epoch": 0.85, + "learning_rate": 0.0002, + "loss": 0.6884, + "step": 2410 + }, + { + "epoch": 0.85, + "learning_rate": 0.0002, + "loss": 0.6951, + "step": 2420 + }, + { + "epoch": 0.86, + "learning_rate": 0.0002, + "loss": 0.6889, + "step": 2430 + }, + { + "epoch": 0.86, + "learning_rate": 0.0002, + "loss": 0.6504, + "step": 2440 + }, + { + "epoch": 0.86, + "learning_rate": 0.0002, + "loss": 0.7216, + "step": 2450 + }, + { + "epoch": 0.87, + "learning_rate": 0.0002, + "loss": 0.6864, + "step": 2460 + }, + { + "epoch": 0.87, + "learning_rate": 0.0002, + "loss": 0.6508, + "step": 2470 + }, + { + "epoch": 0.87, + "learning_rate": 0.0002, + "loss": 0.6698, + "step": 2480 + }, + { + "epoch": 0.88, + "learning_rate": 0.0002, + "loss": 0.7087, + "step": 2490 + }, + { + "epoch": 0.88, + "learning_rate": 0.0002, + "loss": 0.6714, + "step": 2500 + }, + { + "epoch": 0.89, + "learning_rate": 0.0002, + "loss": 0.7352, + "step": 2510 + }, + { + "epoch": 0.89, + "learning_rate": 0.0002, + "loss": 0.7212, + "step": 2520 + }, + { + "epoch": 0.89, + "learning_rate": 0.0002, + "loss": 0.6869, + "step": 2530 + }, + { + "epoch": 0.9, + "learning_rate": 0.0002, + "loss": 0.6961, + "step": 2540 + }, + { + "epoch": 0.9, + "learning_rate": 0.0002, + "loss": 0.7009, + "step": 2550 + }, + { + "epoch": 0.9, + "learning_rate": 0.0002, + "loss": 0.7227, + "step": 2560 + }, + { + "epoch": 0.91, + "learning_rate": 0.0002, + "loss": 0.6833, + "step": 2570 + }, + { + "epoch": 0.91, + "learning_rate": 0.0002, + "loss": 0.7468, + "step": 2580 + }, + { + "epoch": 0.91, + "learning_rate": 0.0002, + "loss": 0.7568, + "step": 2590 + }, + { + "epoch": 0.92, + "learning_rate": 0.0002, + "loss": 0.7271, + "step": 2600 + }, + { + "epoch": 0.92, + "eval_loss": 0.7648921012878418, + "eval_runtime": 185.3553, + "eval_samples_per_second": 5.395, + "eval_steps_per_second": 2.698, + "step": 2600 + }, + { + "epoch": 0.92, + "mmlu_eval_accuracy": 0.4649620294296765, + "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, + "mmlu_eval_accuracy_anatomy": 0.5714285714285714, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.3125, + "mmlu_eval_accuracy_college_chemistry": 0.25, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.08333333333333333, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.4375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, + "mmlu_eval_accuracy_high_school_european_history": 0.5, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, + "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, + "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, + "mmlu_eval_accuracy_human_aging": 0.6521739130434783, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5757575757575758, + "mmlu_eval_accuracy_philosophy": 0.5, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, + "mmlu_eval_accuracy_professional_law": 0.3235294117647059, + "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.5, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, + "mmlu_eval_accuracy_virology": 0.5, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.3137481814109315, + "step": 2600 + }, + { + "epoch": 0.92, + "learning_rate": 0.0002, + "loss": 0.7144, + "step": 2610 + }, + { + "epoch": 0.92, + "learning_rate": 0.0002, + "loss": 0.7213, + "step": 2620 + }, + { + "epoch": 0.93, + "learning_rate": 0.0002, + "loss": 0.685, + "step": 2630 + }, + { + "epoch": 0.93, + "learning_rate": 0.0002, + "loss": 0.6937, + "step": 2640 + }, + { + "epoch": 0.93, + "learning_rate": 0.0002, + "loss": 0.7367, + "step": 2650 + }, + { + "epoch": 0.94, + "learning_rate": 0.0002, + "loss": 0.7221, + "step": 2660 + }, + { + "epoch": 0.94, + "learning_rate": 0.0002, + "loss": 0.717, + "step": 2670 + }, + { + "epoch": 0.95, + "learning_rate": 0.0002, + "loss": 0.6915, + "step": 2680 + }, + { + "epoch": 0.95, + "learning_rate": 0.0002, + "loss": 0.6913, + "step": 2690 + }, + { + "epoch": 0.95, + "learning_rate": 0.0002, + "loss": 0.6552, + "step": 2700 + }, + { + "epoch": 0.96, + "learning_rate": 0.0002, + "loss": 0.7508, + "step": 2710 + }, + { + "epoch": 0.96, + "learning_rate": 0.0002, + "loss": 0.6657, + "step": 2720 + }, + { + "epoch": 0.96, + "learning_rate": 0.0002, + "loss": 0.7466, + "step": 2730 + }, + { + "epoch": 0.97, + "learning_rate": 0.0002, + "loss": 0.7433, + "step": 2740 + }, + { + "epoch": 0.97, + "learning_rate": 0.0002, + "loss": 0.7041, + "step": 2750 + }, + { + "epoch": 0.97, + "learning_rate": 0.0002, + "loss": 0.7001, + "step": 2760 + }, + { + "epoch": 0.98, + "learning_rate": 0.0002, + "loss": 0.6845, + "step": 2770 + }, + { + "epoch": 0.98, + "learning_rate": 0.0002, + "loss": 0.7031, + "step": 2780 + }, + { + "epoch": 0.98, + "learning_rate": 0.0002, + "loss": 0.7454, + "step": 2790 + }, + { + "epoch": 0.99, + "learning_rate": 0.0002, + "loss": 0.7136, + "step": 2800 + }, + { + "epoch": 0.99, + "eval_loss": 0.7639025449752808, + "eval_runtime": 184.2838, + "eval_samples_per_second": 5.426, + "eval_steps_per_second": 2.713, + "step": 2800 + }, + { + "epoch": 0.99, + "mmlu_eval_accuracy": 0.4617285223167345, + "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, + "mmlu_eval_accuracy_anatomy": 0.5714285714285714, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.375, + "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.4375, + "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, + "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, + "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, + "mmlu_eval_accuracy_high_school_mathematics": 0.10344827586206896, + "mmlu_eval_accuracy_high_school_microeconomics": 0.5, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6956521739130435, + "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.7272727272727273, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.5, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.47058823529411764, + "mmlu_eval_accuracy_prehistory": 0.4857142857142857, + "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, + "mmlu_eval_accuracy_professional_law": 0.32941176470588235, + "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.4166666666666667, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.6363636363636364, + "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, + "mmlu_eval_accuracy_virology": 0.3333333333333333, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.2059359818152287, + "step": 2800 + }, + { + "epoch": 0.99, + "learning_rate": 0.0002, + "loss": 0.7341, + "step": 2810 + }, + { + "epoch": 0.99, + "learning_rate": 0.0002, + "loss": 0.7175, + "step": 2820 + }, + { + "epoch": 1.0, + "learning_rate": 0.0002, + "loss": 0.6706, + "step": 2830 + }, + { + "epoch": 1.0, + "learning_rate": 0.0002, + "loss": 0.6273, + "step": 2840 + }, + { + "epoch": 1.01, + "learning_rate": 0.0002, + "loss": 0.6064, + "step": 2850 + }, + { + "epoch": 1.01, + "learning_rate": 0.0002, + "loss": 0.6719, + "step": 2860 + }, + { + "epoch": 1.01, + "learning_rate": 0.0002, + "loss": 0.6426, + "step": 2870 + }, + { + "epoch": 1.02, + "learning_rate": 0.0002, + "loss": 0.6111, + "step": 2880 + }, + { + "epoch": 1.02, + "learning_rate": 0.0002, + "loss": 0.6084, + "step": 2890 + }, + { + "epoch": 1.02, + "learning_rate": 0.0002, + "loss": 0.6414, + "step": 2900 + }, + { + "epoch": 1.03, + "learning_rate": 0.0002, + "loss": 0.6305, + "step": 2910 + }, + { + "epoch": 1.03, + "learning_rate": 0.0002, + "loss": 0.6568, + "step": 2920 + }, + { + "epoch": 1.03, + "learning_rate": 0.0002, + "loss": 0.6456, + "step": 2930 + }, + { + "epoch": 1.04, + "learning_rate": 0.0002, + "loss": 0.6124, + "step": 2940 + }, + { + "epoch": 1.04, + "learning_rate": 0.0002, + "loss": 0.6381, + "step": 2950 + }, + { + "epoch": 1.04, + "learning_rate": 0.0002, + "loss": 0.6184, + "step": 2960 + }, + { + "epoch": 1.05, + "learning_rate": 0.0002, + "loss": 0.588, + "step": 2970 + }, + { + "epoch": 1.05, + "learning_rate": 0.0002, + "loss": 0.6697, + "step": 2980 + }, + { + "epoch": 1.05, + "learning_rate": 0.0002, + "loss": 0.6403, + "step": 2990 + }, + { + "epoch": 1.06, + "learning_rate": 0.0002, + "loss": 0.6339, + "step": 3000 + }, + { + "epoch": 1.06, + "eval_loss": 0.7678287625312805, + "eval_runtime": 184.2482, + "eval_samples_per_second": 5.427, + "eval_steps_per_second": 2.714, + "step": 3000 + }, + { + "epoch": 1.06, + "mmlu_eval_accuracy": 0.46810410139947695, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.375, + "mmlu_eval_accuracy_college_chemistry": 0.25, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.2727272727272727, + "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, + "mmlu_eval_accuracy_econometrics": 0.08333333333333333, + "mmlu_eval_accuracy_electrical_engineering": 0.375, + "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.40625, + "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, + "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, + "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, + "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, + "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, + "mmlu_eval_accuracy_human_aging": 0.6521739130434783, + "mmlu_eval_accuracy_human_sexuality": 0.5833333333333334, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.7272727272727273, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, + "mmlu_eval_accuracy_moral_disputes": 0.5, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5757575757575758, + "mmlu_eval_accuracy_philosophy": 0.4411764705882353, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, + "mmlu_eval_accuracy_professional_law": 0.34705882352941175, + "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.4166666666666667, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.6818181818181818, + "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, + "mmlu_eval_accuracy_virology": 0.5555555555555556, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.0877072031830994, + "step": 3000 + }, + { + "epoch": 1.06, + "learning_rate": 0.0002, + "loss": 0.6124, + "step": 3010 + }, + { + "epoch": 1.07, + "learning_rate": 0.0002, + "loss": 0.5688, + "step": 3020 + }, + { + "epoch": 1.07, + "learning_rate": 0.0002, + "loss": 0.5921, + "step": 3030 + }, + { + "epoch": 1.07, + "learning_rate": 0.0002, + "loss": 0.6182, + "step": 3040 + }, + { + "epoch": 1.08, + "learning_rate": 0.0002, + "loss": 0.6351, + "step": 3050 + }, + { + "epoch": 1.08, + "learning_rate": 0.0002, + "loss": 0.672, + "step": 3060 + }, + { + "epoch": 1.08, + "learning_rate": 0.0002, + "loss": 0.6648, + "step": 3070 + }, + { + "epoch": 1.09, + "learning_rate": 0.0002, + "loss": 0.6858, + "step": 3080 + }, + { + "epoch": 1.09, + "learning_rate": 0.0002, + "loss": 0.6367, + "step": 3090 + }, + { + "epoch": 1.09, + "learning_rate": 0.0002, + "loss": 0.5801, + "step": 3100 + }, + { + "epoch": 1.1, + "learning_rate": 0.0002, + "loss": 0.6313, + "step": 3110 + }, + { + "epoch": 1.1, + "learning_rate": 0.0002, + "loss": 0.614, + "step": 3120 + }, + { + "epoch": 1.1, + "learning_rate": 0.0002, + "loss": 0.6164, + "step": 3130 + }, + { + "epoch": 1.11, + "learning_rate": 0.0002, + "loss": 0.6137, + "step": 3140 + }, + { + "epoch": 1.11, + "learning_rate": 0.0002, + "loss": 0.6205, + "step": 3150 + }, + { + "epoch": 1.11, + "learning_rate": 0.0002, + "loss": 0.6495, + "step": 3160 + }, + { + "epoch": 1.12, + "learning_rate": 0.0002, + "loss": 0.6411, + "step": 3170 + }, + { + "epoch": 1.12, + "learning_rate": 0.0002, + "loss": 0.6338, + "step": 3180 + }, + { + "epoch": 1.13, + "learning_rate": 0.0002, + "loss": 0.6278, + "step": 3190 + }, + { + "epoch": 1.13, + "learning_rate": 0.0002, + "loss": 0.6291, + "step": 3200 + }, + { + "epoch": 1.13, + "eval_loss": 0.769086480140686, + "eval_runtime": 184.5863, + "eval_samples_per_second": 5.418, + "eval_steps_per_second": 2.709, + "step": 3200 + }, + { + "epoch": 1.13, + "mmlu_eval_accuracy": 0.46426909704043023, + "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5625, + "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, + "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, + "mmlu_eval_accuracy_college_biology": 0.4375, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.2727272727272727, + "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, + "mmlu_eval_accuracy_econometrics": 0.16666666666666666, + "mmlu_eval_accuracy_electrical_engineering": 0.3125, + "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, + "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, + "mmlu_eval_accuracy_global_facts": 0.4, + "mmlu_eval_accuracy_high_school_biology": 0.40625, + "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, + "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_european_history": 0.5, + "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, + "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, + "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, + "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6086956521739131, + "mmlu_eval_accuracy_human_sexuality": 0.5, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.7272727272727273, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, + "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5454545454545454, + "mmlu_eval_accuracy_philosophy": 0.5, + "mmlu_eval_accuracy_prehistory": 0.5142857142857142, + "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, + "mmlu_eval_accuracy_professional_law": 0.3235294117647059, + "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.4166666666666667, + "mmlu_eval_accuracy_security_studies": 0.5925925925925926, + "mmlu_eval_accuracy_sociology": 0.6363636363636364, + "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, + "mmlu_eval_accuracy_virology": 0.5, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.0945545882764747, + "step": 3200 + }, + { + "epoch": 1.13, + "learning_rate": 0.0002, + "loss": 0.5948, + "step": 3210 + }, + { + "epoch": 1.14, + "learning_rate": 0.0002, + "loss": 0.6622, + "step": 3220 + }, + { + "epoch": 1.14, + "learning_rate": 0.0002, + "loss": 0.6265, + "step": 3230 + }, + { + "epoch": 1.14, + "learning_rate": 0.0002, + "loss": 0.6154, + "step": 3240 + }, + { + "epoch": 1.15, + "learning_rate": 0.0002, + "loss": 0.5703, + "step": 3250 + }, + { + "epoch": 1.15, + "learning_rate": 0.0002, + "loss": 0.6418, + "step": 3260 + }, + { + "epoch": 1.15, + "learning_rate": 0.0002, + "loss": 0.6197, + "step": 3270 + }, + { + "epoch": 1.16, + "learning_rate": 0.0002, + "loss": 0.6295, + "step": 3280 + }, + { + "epoch": 1.16, + "learning_rate": 0.0002, + "loss": 0.6537, + "step": 3290 + }, + { + "epoch": 1.16, + "learning_rate": 0.0002, + "loss": 0.5913, + "step": 3300 + }, + { + "epoch": 1.17, + "learning_rate": 0.0002, + "loss": 0.6146, + "step": 3310 + }, + { + "epoch": 1.17, + "learning_rate": 0.0002, + "loss": 0.6304, + "step": 3320 + }, + { + "epoch": 1.17, + "learning_rate": 0.0002, + "loss": 0.6601, + "step": 3330 + }, + { + "epoch": 1.18, + "learning_rate": 0.0002, + "loss": 0.5797, + "step": 3340 + }, + { + "epoch": 1.18, + "learning_rate": 0.0002, + "loss": 0.6143, + "step": 3350 + }, + { + "epoch": 1.19, + "learning_rate": 0.0002, + "loss": 0.674, + "step": 3360 + }, + { + "epoch": 1.19, + "learning_rate": 0.0002, + "loss": 0.6489, + "step": 3370 + }, + { + "epoch": 1.19, + "learning_rate": 0.0002, + "loss": 0.6867, + "step": 3380 + }, + { + "epoch": 1.2, + "learning_rate": 0.0002, + "loss": 0.6091, + "step": 3390 + }, + { + "epoch": 1.2, + "learning_rate": 0.0002, + "loss": 0.6734, + "step": 3400 + }, + { + "epoch": 1.2, + "eval_loss": 0.7711524367332458, + "eval_runtime": 185.1721, + "eval_samples_per_second": 5.4, + "eval_steps_per_second": 2.7, + "step": 3400 + }, + { + "epoch": 1.2, + "mmlu_eval_accuracy": 0.462289893215491, + "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, + "mmlu_eval_accuracy_anatomy": 0.5, + "mmlu_eval_accuracy_astronomy": 0.5, + "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, + "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, + "mmlu_eval_accuracy_college_biology": 0.3125, + "mmlu_eval_accuracy_college_chemistry": 0.125, + "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, + "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, + "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, + "mmlu_eval_accuracy_college_physics": 0.45454545454545453, + "mmlu_eval_accuracy_computer_security": 0.36363636363636365, + "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, + "mmlu_eval_accuracy_econometrics": 0.08333333333333333, + "mmlu_eval_accuracy_electrical_engineering": 0.4375, + "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, + "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, + "mmlu_eval_accuracy_global_facts": 0.5, + "mmlu_eval_accuracy_high_school_biology": 0.40625, + "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, + "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, + "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, + "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, + "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, + "mmlu_eval_accuracy_high_school_macroeconomics": 0.27906976744186046, + "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, + "mmlu_eval_accuracy_high_school_microeconomics": 0.5, + "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, + "mmlu_eval_accuracy_high_school_psychology": 0.7, + "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, + "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, + "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, + "mmlu_eval_accuracy_human_aging": 0.6521739130434783, + "mmlu_eval_accuracy_human_sexuality": 0.5833333333333334, + "mmlu_eval_accuracy_international_law": 0.6923076923076923, + "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, + "mmlu_eval_accuracy_logical_fallacies": 0.5, + "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, + "mmlu_eval_accuracy_management": 0.6363636363636364, + "mmlu_eval_accuracy_marketing": 0.72, + "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, + "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, + "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, + "mmlu_eval_accuracy_moral_scenarios": 0.24, + "mmlu_eval_accuracy_nutrition": 0.5757575757575758, + "mmlu_eval_accuracy_philosophy": 0.5294117647058824, + "mmlu_eval_accuracy_prehistory": 0.45714285714285713, + "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, + "mmlu_eval_accuracy_professional_law": 0.3352941176470588, + "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, + "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, + "mmlu_eval_accuracy_public_relations": 0.5, + "mmlu_eval_accuracy_security_studies": 0.5555555555555556, + "mmlu_eval_accuracy_sociology": 0.7272727272727273, + "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, + "mmlu_eval_accuracy_virology": 0.5, + "mmlu_eval_accuracy_world_religions": 0.7368421052631579, + "mmlu_loss": 1.2021908294944477, + "step": 3400 + } + ], + "max_steps": 5000, + "num_train_epochs": 2, + "total_flos": 7.858095077549261e+17, + "trial_name": null, + "trial_params": null +}