{ "best_metric": 0.6245253086090088, "best_model_checkpoint": "./output_v2/7b_cluster012_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_012/checkpoint-1600", "epoch": 1.8529241459177765, "global_step": 1600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7418, "step": 10 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7269, "step": 20 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7061, "step": 30 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.6809, "step": 40 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6742, "step": 50 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.6789, "step": 60 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6628, "step": 70 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.6995, "step": 80 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.6774, "step": 90 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6716, "step": 100 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.6628, "step": 110 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6696, "step": 120 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.648, "step": 130 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.6823, "step": 140 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6532, "step": 150 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.669, "step": 160 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.6639, "step": 170 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.6582, "step": 180 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.6381, "step": 190 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6342, "step": 200 }, { "epoch": 0.23, "eval_loss": 0.6798371076583862, "eval_runtime": 220.8775, "eval_samples_per_second": 4.527, "eval_steps_per_second": 2.264, "step": 200 }, { "epoch": 0.23, "mmlu_eval_accuracy": 0.4661323913730994, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.35294117647058826, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.1315238676556718, "step": 200 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.6574, "step": 210 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6601, "step": 220 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6499, "step": 230 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.6469, "step": 240 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.6546, "step": 250 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.6681, "step": 260 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6403, "step": 270 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.676, "step": 280 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.6548, "step": 290 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6394, "step": 300 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6173, "step": 310 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.6425, "step": 320 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.6379, "step": 330 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.6191, "step": 340 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.6645, "step": 350 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5998, "step": 360 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6402, "step": 370 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6291, "step": 380 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6202, "step": 390 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.6532, "step": 400 }, { "epoch": 0.46, "eval_loss": 0.6604505777359009, "eval_runtime": 220.7584, "eval_samples_per_second": 4.53, "eval_steps_per_second": 2.265, "step": 400 }, { "epoch": 0.46, "mmlu_eval_accuracy": 0.466397920486829, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3764705882352941, "mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9161743937308265, "step": 400 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.6487, "step": 410 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.6248, "step": 420 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.6421, "step": 430 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.6679, "step": 440 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.6202, "step": 450 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.7009, "step": 460 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.627, "step": 470 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.6294, "step": 480 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.6254, "step": 490 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.6174, "step": 500 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.6225, "step": 510 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.6703, "step": 520 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.6232, "step": 530 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.6606, "step": 540 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.5992, "step": 550 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.6118, "step": 560 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.642, "step": 570 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.6149, "step": 580 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.6148, "step": 590 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.6258, "step": 600 }, { "epoch": 0.69, "eval_loss": 0.6469126343727112, "eval_runtime": 220.793, "eval_samples_per_second": 4.529, "eval_steps_per_second": 2.265, "step": 600 }, { "epoch": 0.69, "mmlu_eval_accuracy": 0.47179539026686096, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 0.9272451737102889, "step": 600 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.5855, "step": 610 }, { "epoch": 0.72, "learning_rate": 0.0002, "loss": 0.6213, "step": 620 }, { "epoch": 0.73, "learning_rate": 0.0002, "loss": 0.6392, "step": 630 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.6488, "step": 640 }, { "epoch": 0.75, "learning_rate": 0.0002, "loss": 0.6377, "step": 650 }, { "epoch": 0.76, "learning_rate": 0.0002, "loss": 0.6119, "step": 660 }, { "epoch": 0.78, "learning_rate": 0.0002, "loss": 0.609, "step": 670 }, { "epoch": 0.79, "learning_rate": 0.0002, "loss": 0.6189, "step": 680 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.6444, "step": 690 }, { "epoch": 0.81, "learning_rate": 0.0002, "loss": 0.6365, "step": 700 }, { "epoch": 0.82, "learning_rate": 0.0002, "loss": 0.6219, "step": 710 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.626, "step": 720 }, { "epoch": 0.85, "learning_rate": 0.0002, "loss": 0.583, "step": 730 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.6017, "step": 740 }, { "epoch": 0.87, "learning_rate": 0.0002, "loss": 0.635, "step": 750 }, { "epoch": 0.88, "learning_rate": 0.0002, "loss": 0.6216, "step": 760 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.5759, "step": 770 }, { "epoch": 0.9, "learning_rate": 0.0002, "loss": 0.5969, "step": 780 }, { "epoch": 0.91, "learning_rate": 0.0002, "loss": 0.6033, "step": 790 }, { "epoch": 0.93, "learning_rate": 0.0002, "loss": 0.6057, "step": 800 }, { "epoch": 0.93, "eval_loss": 0.6383256912231445, "eval_runtime": 220.6008, "eval_samples_per_second": 4.533, "eval_steps_per_second": 2.267, "step": 800 }, { "epoch": 0.93, "mmlu_eval_accuracy": 0.46887372107587305, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.0044854765577975, "step": 800 }, { "epoch": 0.94, "learning_rate": 0.0002, "loss": 0.6071, "step": 810 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.5743, "step": 820 }, { "epoch": 0.96, "learning_rate": 0.0002, "loss": 0.6023, "step": 830 }, { "epoch": 0.97, "learning_rate": 0.0002, "loss": 0.6004, "step": 840 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.5766, "step": 850 }, { "epoch": 1.0, "learning_rate": 0.0002, "loss": 0.63, "step": 860 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.5598, "step": 870 }, { "epoch": 1.02, "learning_rate": 0.0002, "loss": 0.5241, "step": 880 }, { "epoch": 1.03, "learning_rate": 0.0002, "loss": 0.5345, "step": 890 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.5461, "step": 900 }, { "epoch": 1.05, "learning_rate": 0.0002, "loss": 0.5186, "step": 910 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.5461, "step": 920 }, { "epoch": 1.08, "learning_rate": 0.0002, "loss": 0.5642, "step": 930 }, { "epoch": 1.09, "learning_rate": 0.0002, "loss": 0.5216, "step": 940 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.5416, "step": 950 }, { "epoch": 1.11, "learning_rate": 0.0002, "loss": 0.5295, "step": 960 }, { "epoch": 1.12, "learning_rate": 0.0002, "loss": 0.5407, "step": 970 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.547, "step": 980 }, { "epoch": 1.15, "learning_rate": 0.0002, "loss": 0.5566, "step": 990 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.5895, "step": 1000 }, { "epoch": 1.16, "eval_loss": 0.6423189043998718, "eval_runtime": 221.1599, "eval_samples_per_second": 4.522, "eval_steps_per_second": 2.261, "step": 1000 }, { "epoch": 1.16, "mmlu_eval_accuracy": 0.4701589950226067, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.7727272727272727, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 0.9071105094748129, "step": 1000 }, { "epoch": 1.17, "learning_rate": 0.0002, "loss": 0.5462, "step": 1010 }, { "epoch": 1.18, "learning_rate": 0.0002, "loss": 0.5465, "step": 1020 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.5454, "step": 1030 }, { "epoch": 1.2, "learning_rate": 0.0002, "loss": 0.5208, "step": 1040 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.5409, "step": 1050 }, { "epoch": 1.23, "learning_rate": 0.0002, "loss": 0.5412, "step": 1060 }, { "epoch": 1.24, "learning_rate": 0.0002, "loss": 0.5251, "step": 1070 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.5528, "step": 1080 }, { "epoch": 1.26, "learning_rate": 0.0002, "loss": 0.5449, "step": 1090 }, { "epoch": 1.27, "learning_rate": 0.0002, "loss": 0.5383, "step": 1100 }, { "epoch": 1.29, "learning_rate": 0.0002, "loss": 0.5544, "step": 1110 }, { "epoch": 1.3, "learning_rate": 0.0002, "loss": 0.5287, "step": 1120 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.5309, "step": 1130 }, { "epoch": 1.32, "learning_rate": 0.0002, "loss": 0.5159, "step": 1140 }, { "epoch": 1.33, "learning_rate": 0.0002, "loss": 0.5343, "step": 1150 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.5282, "step": 1160 }, { "epoch": 1.35, "learning_rate": 0.0002, "loss": 0.5315, "step": 1170 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.5492, "step": 1180 }, { "epoch": 1.38, "learning_rate": 0.0002, "loss": 0.5429, "step": 1190 }, { "epoch": 1.39, "learning_rate": 0.0002, "loss": 0.5208, "step": 1200 }, { "epoch": 1.39, "eval_loss": 0.6369008421897888, "eval_runtime": 221.011, "eval_samples_per_second": 4.525, "eval_steps_per_second": 2.262, "step": 1200 }, { "epoch": 1.39, "mmlu_eval_accuracy": 0.47643388223673894, "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.09090909090909091, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.1935483870967742, "mmlu_eval_accuracy_professional_law": 0.3058823529411765, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.7727272727272727, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9347293432364264, "step": 1200 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.5522, "step": 1210 }, { "epoch": 1.41, "learning_rate": 0.0002, "loss": 0.5528, "step": 1220 }, { "epoch": 1.42, "learning_rate": 0.0002, "loss": 0.5721, "step": 1230 }, { "epoch": 1.44, "learning_rate": 0.0002, "loss": 0.5326, "step": 1240 }, { "epoch": 1.45, "learning_rate": 0.0002, "loss": 0.5497, "step": 1250 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.5476, "step": 1260 }, { "epoch": 1.47, "learning_rate": 0.0002, "loss": 0.5285, "step": 1270 }, { "epoch": 1.48, "learning_rate": 0.0002, "loss": 0.5827, "step": 1280 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.5332, "step": 1290 }, { "epoch": 1.51, "learning_rate": 0.0002, "loss": 0.5504, "step": 1300 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.5909, "step": 1310 }, { "epoch": 1.53, "learning_rate": 0.0002, "loss": 0.5266, "step": 1320 }, { "epoch": 1.54, "learning_rate": 0.0002, "loss": 0.5614, "step": 1330 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.517, "step": 1340 }, { "epoch": 1.56, "learning_rate": 0.0002, "loss": 0.5402, "step": 1350 }, { "epoch": 1.57, "learning_rate": 0.0002, "loss": 0.5511, "step": 1360 }, { "epoch": 1.59, "learning_rate": 0.0002, "loss": 0.5385, "step": 1370 }, { "epoch": 1.6, "learning_rate": 0.0002, "loss": 0.5431, "step": 1380 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.5528, "step": 1390 }, { "epoch": 1.62, "learning_rate": 0.0002, "loss": 0.5535, "step": 1400 }, { "epoch": 1.62, "eval_loss": 0.6297795176506042, "eval_runtime": 221.766, "eval_samples_per_second": 4.509, "eval_steps_per_second": 2.255, "step": 1400 }, { "epoch": 1.62, "mmlu_eval_accuracy": 0.46949284116120593, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6086956521739131, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.4166666666666667, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7727272727272727, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.917322517929516, "step": 1400 }, { "epoch": 1.63, "learning_rate": 0.0002, "loss": 0.5332, "step": 1410 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.5563, "step": 1420 }, { "epoch": 1.66, "learning_rate": 0.0002, "loss": 0.5173, "step": 1430 }, { "epoch": 1.67, "learning_rate": 0.0002, "loss": 0.5432, "step": 1440 }, { "epoch": 1.68, "learning_rate": 0.0002, "loss": 0.5492, "step": 1450 }, { "epoch": 1.69, "learning_rate": 0.0002, "loss": 0.5482, "step": 1460 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.5191, "step": 1470 }, { "epoch": 1.71, "learning_rate": 0.0002, "loss": 0.5578, "step": 1480 }, { "epoch": 1.73, "learning_rate": 0.0002, "loss": 0.5405, "step": 1490 }, { "epoch": 1.74, "learning_rate": 0.0002, "loss": 0.5499, "step": 1500 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.5204, "step": 1510 }, { "epoch": 1.76, "learning_rate": 0.0002, "loss": 0.5327, "step": 1520 }, { "epoch": 1.77, "learning_rate": 0.0002, "loss": 0.5495, "step": 1530 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.5527, "step": 1540 }, { "epoch": 1.8, "learning_rate": 0.0002, "loss": 0.5569, "step": 1550 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.5626, "step": 1560 }, { "epoch": 1.82, "learning_rate": 0.0002, "loss": 0.5432, "step": 1570 }, { "epoch": 1.83, "learning_rate": 0.0002, "loss": 0.5432, "step": 1580 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.5325, "step": 1590 }, { "epoch": 1.85, "learning_rate": 0.0002, "loss": 0.5136, "step": 1600 }, { "epoch": 1.85, "eval_loss": 0.6245253086090088, "eval_runtime": 222.3896, "eval_samples_per_second": 4.497, "eval_steps_per_second": 2.248, "step": 1600 }, { "epoch": 1.85, "mmlu_eval_accuracy": 0.47687615586569587, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5625, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.5, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0008745580600384, "step": 1600 } ], "max_steps": 5000, "num_train_epochs": 6, "total_flos": 4.014370057017508e+17, "trial_name": null, "trial_params": null }