--- base_model: mistralai/Mistral-Nemo-Instruct-2407 license: apache-2.0 tags: - axolotl - dpo - trl - generated_from_trainer --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Instruct-2407 model_type: MistralForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false chat_template: inst rl: dpo datasets: - path: HumanLLMs/humanish-dpo-project type: chatml.prompt_pairs conversation: mistral dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./humanish-mistral-nemo-instruct-2407 sequence_len: 8192 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 4 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Humanish-DPO wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: save_safetensors: true ```

# Humanish-Mistral-Nemo-Instruct-2407 This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 341 ### Training results ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0