--- base_model: HuggingFaceTB/cosmo2-1.7B-webinst-sc2 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceTB/Helpsteer model-index: - name: cosmo2-1.7B-webinst-sc2-dpo-helpsteer-ep1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/loubnabnl/huggingface/runs/ellmeibr) # cosmo2-1.7B-webinst-sc2-dpo-helpsteer-ep1 This model is a fine-tuned version of [HuggingFaceTB/cosmo2-1.7B-webinst-sc2](https://huggingface.co/HuggingFaceTB/cosmo2-1.7B-webinst-sc2) on the HuggingFaceTB/Helpsteer dataset. It achieves the following results on the evaluation set: - Loss: 0.6672 - Rewards/chosen: -0.0466 - Rewards/rejected: -0.0933 - Rewards/accuracies: 0.5500 - Rewards/margins: 0.0467 - Logps/rejected: -149.4311 - Logps/chosen: -121.9851 - Logits/rejected: 0.8632 - Logits/chosen: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1