--- license: cc-by-sa-4.0 datasets: - Homie0609/MatchTime language: - en tags: - sports - soccer --- ## Requirements - Python >= 3.8 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) - [PyTorch >= 2.0.0](https://pytorch.org/) (If use A100) - transformers >= 4.42.3 - pycocoevalcap >= 1.2 A suitable [conda](https://conda.io/) environment named `matchtime` can be created and activated with: ``` cd MatchTime conda env create -f environment.yaml conda activate matchtime ``` ## Training Before training, make sure you have prepared [features](https://pypi.org/project/SoccerNet/) and caption [data]((https://drive.google.com/drive/folders/14tb6lV2nlTxn3VygwAPdmtKm7v0Ss8wG)), and put them into according folders. The structure after collating should be like: `````` └─ MatchTime ├─ dataset │ ├─ MatchTime │ │ ├─ valid │ │ └─ train │ │ ├─ england_epl_2014-2015 │ │ ... ├─ 2015-02-21 - 18-00 Chelsea 1 - 1 Burnley │ │ ... └─ Labels-caption.json │ │ │ ├─ SN-Caption │ └─ SN-Caption-test-align │ ├─ england_epl_2015-2016 │ ... ├─ 2015-08-16 - 18-00 Manchester City 3 - 0 Chelsea │ ... └─ Labels-caption_with_gt.json │ ├─ features │ ├─ baidu_soccer_embeddings │ │ ├─ england_epl_2014-2015 ... │ ... ├─ 2015-02-21 - 18-00 Chelsea 1 - 1 Burnley │ ... ├─ 1_baidu_soccer_embeddings.npy │ └─ 2_baidu_soccer_embeddings.npy ├─ C3D_PCA512 ... `````` with the format of features is adjusted by ``` python ./features/preprocess.py directory_path_of_feature ``` After preparing the data and features, you can pre-train (or finetune) with the following terminal command (Check hyper-parameters at the bottom of *train.py*): ``` python train.py ``` ## Inference We provide two types of inference: #### For all test set You can generate a *.csv* file with the following code to test the ***MatchVoice*** model with the following code (Check hyper-parameters at the bottom of *inference.py*) ``` python inference.py ``` There is a sample of this type of inference in *./inference_result/sample.csv*. #### For Single Video We also provide a version for predict the commentary single video (for our checkpoints, use 30s video) ``` python inference_single_video_CLIP.py single_video_path ``` Here we only provide the version of CLIP feature (using VIT/B-32), for crop the CLIP feature, please check [here](https://github.com/openai/CLIP). CLIP features are not the one with best performance but are the most friendly for new new videos. ## Alignment Before doing alignment, you should download videos from [here](https://www.soccer-net.org/data) (224p is enough) and make it in the following format: `````` └─ MatchTime ├─ videos_224p ... ├─ england_epl_2014-2015 ... ├─ 2015-02-21 - 18-00 Chelsea 1 - 1 Burnley ... ├─ 1_224.mkv └─ 2_224p.mkv `````` ### Pre-process (Coarse Align) We need to use [WhisperX](https://github.com/m-bain/whisperX) and [LLaMA3](https://huggingface.co/docs/transformers/model_doc/llama3)(as agent) to finish coarse alignment with following steps: *WhisperX ASR:* ``` python ./alignment/soccer_whisperx.py --process_directory video_folder(eg. ./videos_224p/england_epl_2014-2015) --output_directory output_folder(eg. ./ASR_results/england_epl_2014-2015) ``` *Transform to Events:* ``` python ./alignment/soccer_asr2events.py --base_path ASR_results_folder(eg. ./ASR_results/england_epl_2014-2015) --output_dir envent_results_folder(eg. ./event_results/england_epl_2014-2015) ``` *Align from Events:* ``` python ./alignment/soccer_align_from_event.py --event_path envent_results_folder(eg. ./event_results/england_epl_2014-2015) --output_dir output_directory(eg. ./pre-processed/england_epl_2014-2015) ``` More details could be checked in paper. ### Contrastive Learning (Fine-grained Align) After downloading checkpoints from [here](https://huggingface.co/Homie0609/MatchTime/tree/main). Use the following code to finish alignment with contrastive learning: ``` python ./alignment/do_alignment.py ``` By changing the hyper-parameter ***finding_words***, you can freely align from ASR, enent, or original SN-Caption. Also, you can directly use alignment model by ``` from alignment.matchtime_model import ContrastiveLearningModel ``` ## Evaluation We provide codes for evaluate the prediction results: ``` # for single csv file python ./evaluation/scoer_single.py --csv_path ./inference_result/sample.csv # for many csv files to record scores in a new csv file python ./evaluation/scoer_group.py # for gpt score (need OpenAI API Key) python ./evaluation/scoer_gpt.py ./inference_result/sample.csv ```