--- license: gemma library_name: peft tags: - trl - reward-trainer - generated_from_trainer base_model: google/gemma-7b metrics: - accuracy model-index: - name: RM-TLDR_human_loraR64_-1_gemma7b_lr1.41e-05_bs2_g4 results: [] --- # RM-TLDR_human_loraR64_-1_gemma7b_lr1.41e-05_bs2_g4 This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5504 - Accuracy: 0.7435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4935 | 1.0 | 11168 | 0.5452 | 0.7435 | | 0.4459 | 2.0 | 22336 | 0.5504 | 0.7435 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1