from transformers import pipeline from typing import Dict, List, Any from tokenizers.decoders import WordPiece class EndpointDictaBertNERHandler: def __init__(self): self.model = pipeline('ner', model='dicta-il/dictabert-ner', aggregation_strategy='simple') self.model.tokenizer.backend_tokenizer.decoder = WordPiece() def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ return self.model(data['inputs'])